

Easy Freshness with PequodCache Joins

A dissertation presented
by

Bryan Nathan Kate

to
The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

September 2014

© 2014 Bryan Nathan Kate
All rights reserved.

Dissertation Advisor: Professor Eddie Kohler Bryan Nathan Kate

Easy Freshness with Pequod Cache Joins

Abstract

This thesis presents the design of Pequod, a distributed, application-levelWeb cache.Web

developers store data in application-level caches to avoid expensive operations on persis-

tent storage.While useful for reducing the latency of data access, an application-level cache

adds complexity to the application. The developer is responsible for keeping the cached

data consistent with persistent storage. This consistency task can be difficult and costly,

especially when the cached data represent the derived output of a computation.

Pequod improves on the state-of-the-art by introducing an abstraction, the cache join,

that caches derived datawithout requiring extensive consistency-related applicationmain-

tenance. Cache joins provide a mechanism for filtering, joining, and aggregating cached

data. Pequod assumes the responsibility for maintaining cache freshness by automatically

applying updates to derived data as inputs change over time.

This thesis describes how cache joins are defined using a declarative syntax to overlay a

relational data model on a key-value store, how cache data are generated on demand and

kept fresh with a combination of eager and lazy incremental updates, howPequod uses the

memory and computational resources of multiple machines to grow the cache, and how

the correctness of derived data is maintained in the face of eviction.

We show through experimentation that cache joins can be used to improve the perfor-

mance ofWeb applications that cache derived data.We find that moving computation and

maintenance tasks into the cache, where they can often be performed more efficiently, ac-

counts for the majority of the improvement.

iii

Contents

1 Introduction 1

2 Background 10
2.1 Existing key-value application-level caches 10
2.2 Automatic cache maintenance . 12
2.3 Materialized views . 14
2.4 View maintenance . 15
2.5 View selection . 16
2.6 Distributed materialized views . 18
2.7 Summary . 18

3 Motivation 19
3.1 Caching Twip . 20
3.2 Caching Newp . 24

4 Usage 27
4.1 Data ranges . 27
4.2 Relational overlays . 28
4.3 Deployment . 29

5 Cache joins 32
5.1 Specification . 32
5.2 Twip and Newp revisited . 36
5.3 Forward execution . 41
5.4 Partial, dynamic materialization . 45
5.5 Incremental maintenance . 45
5.6 Tuning . 50
5.7 Composition . 56
5.8 Discussion and limitations . 62

6 Distribution 66
6.1 Partitioning . 66
6.2 Subscriptions . 69
6.3 Cache join execution . 71
6.4 Scaling . 75

iv

6.5 Deployment . 76
6.6 Consistency . 78
6.7 Discussion and limitations . 78

7 Eviction 84
7.1 Range-based eviction . 84
7.2 Policies . 86
7.3 Tombstones . 88
7.4 Discussion and limitations . 94

8 Implementation 97
8.1 Ordered data storage . 98
8.2 Optimizations . 99

9 Evaluation 103
9.1 Experiment setup . 103
9.2 System comparison . 106
9.3 Computational variability . 111
9.4 Scalability . 113
9.5 Eviction . 119
9.6 Materialization strategy . 124
9.7 Composition and tuning . 126
9.8 Optimizations . 130
9.9 Summary . 131

10 Conclusion 133

v

Listing of figures

4.1 Application cache deployment options. 31

5.1 Cache join grammar. 33
5.2 Forward cache join execution algorithm. 43
5.3 An example of cache join execution. 44
5.4 Advanced cache join execution algorithm. 48
5.5 Selectivity of Twip timeline joins. 51

6.1 Replicating data with subscriptions. 72
6.2 Cache join execution algorithm in a distributed deployment. 73
6.3 An example of concurrent operations. 74
6.4 A two-tiered deployment configuration for Twip. 77

7.1 A tombstone defers an eviction cascade. 90
7.2 Determination of post-eviction update applicability. 93

8.1 The structure of the data store. 100

9.1 Twip follower distribution. 105
9.2 System comparison using a key-value workload. 107
9.3 System comparison using a materialization workload. 110
9.4 Join computation time. 112
9.5 Scaling Twip. 115
9.6 Replication of Twip posts. 117
9.7 Performance of eviction strategies. 120
9.8 Effect of eviction tombstones in Twip. 123
9.9 Dynamic materialization policy. 125
9.10 Interleaved Newp cache joins. 127
9.11 A factor analysis of implemented optimizations. 131

vi

Acknowledgments

I am enormously grateful to my advisor, Eddie Kohler, for being a mentor, collaborator,
and friend.Withmuchwisdom and patience he transformedmy approach to investigating
hard problems and restored my self-confidence. I am a better programmer and researcher
for the experience.

I also thank my committee, Eddie Kohler, Margo Seltzer, Greg Morrisett, and Robert
Morris, for their guidance and feedback. In particular,many thanks are owed toMargo and
Greg, for encouraging me from the outset and lending a sympathetic ear along the way.
In addition, I want to thank Rob Wood, Matt Welsh, and Radhika Nagpal for giving me
the opportunity to work on the tremendously cool Robobees project. Lastly, I want to ac-
knowledgeH.T.Kung for supportingme early on, and JimWaldo for ourmany informative
and entertaining conversations.

I enjoyedmy time as a graduate student, in part due to the terrific company of my peers
(in SYRAH and beyond). I greatly appreciate the time spent discussing problems, explor-
ing new cities, and blowing off steam. Specifically, I want to thank Neha Narula, Yandong
Mao, andMike Kester, for contributing considerable time and effort to the design and im-
plementation of Pequod, andKarthik Dantu, JasonWaterman, and Peter Bailis for making
the Robobees years so enjoyable and fruitful.

To my family and friends, near and far, old and new: thank you for providing an escape
from the grind, and understanding when I could not get away. I cannot thank my parents
enough for their constant encouragement and support (especially the weekly child care).
I also want to thank Liz, super nanny and beloved Auntie, for brightening Henry’s life and
making mine so much easier.

Finally, Imust thankmywife, Katie, for her endless patience andunwavering confidence
in this endeavor; I couldnothavedone thiswithout her.And, of course,mydear sonHenry,
whose arrival prolonged this experience. He fills my life with stress, laughs, and cuddles,
and I would not have it any other way.

This thesis is an extension of “Easy Freshness with Pequod Cache Joins,” published in
the Proceedings of the 11th USENIX Symposium onNetworked Systems Design and Im-
plementation (NSDI), 2014. It is joint work done with Eddie Kohler, Mike Kester, Neha
Narula, Yandong Mao, and Robert Morris, and was supported by the National Science
Foundation, Microsoft Research, and Quanta Computer.

vii

1
Introduction

Scaling a Web application to handle millions of users is not straightforward. Some of the

largestWeb companies have struggled—sometimes publicly [26]—to find the right com-

bination of technologies to satisfy their needs. This thesis focuses mostly on issues related

to data storage, which are plentiful. Relational databases are notoriously difficult to scale;

the overhead required tomaintain ACID guarantees can inhibit performance [23]. Strate-

gies for scaling persistent storage, such as sharding or deploying a non-relational storage

system [13, 18, 33], can improve application performance, but do not solve the scalability

problem entirely. At some point, persistent storage becomes a bottleneck.

System performance is often improved by the introduction of an application-level cache:

a component that stores a partial copy of application data inmemory.The application-level

cache is a storage layer situated between the application servers and persistent storage.The

cache offloadsmany of the read operations that would otherwise be handled by the persis-

tent store.With correct provisioning and a cache-friendly workload, this architecture leads

to a favorable separation of concerns; the cache handles a large portion of read operations

while the persistent store handles writes and cache misses.

However, application-level caches also tend to make applications more complex. It is

much easier to code an application when all its storage requests produce authoritative

results—when all reads return the most recently written data, and all writes immediately

1

become persistent. But application-level caches make this kind of semantics much harder

to provide, because copies of the data are stored in more than one component (rather

than, for instance, an authoritative database). Application-level caches are by definition

designed by application developers, who must specify what data are cached and how they

are kept fresh (i.e., consistent with the persistent store). Unfortunately, the most useful

application-level cache designs often make it difficult to keep data fresh.

Twitter

These issuesbecomeclear in the context of theTwitter application [40], apopularmicro-

blogging service. As we will see, maintaining freshness in Twitter’s application-level cache

requires a great deal of application effort. At its core, Twitter comprises three operations:

users can “tweet” newmessages, subscribe to the tweets of other users by “following” them,

and check their timeline (a summary of the recentmessages tweeted by those they follow).

Tweeting and following are both write operations that change the state of the application:

at a minimum, tweets and subscription lists must be stored persistently. Timeline checks

are pure read operations. Fortunately, timeline checks outnumber new tweets and sub-

scription changes in the Twitter workload by a factor of 100x and 10x, respectively [25].

This read-heavyworkload suggests that introducing an application-level cachemight boost

application performance.

Unfortunately, a user’s timeline is not first-order data; by definition, it must be derived

from base data (the user’s subscription list and the list of recent tweets by each user he

follows) with a bit of computation. But where in the application workflow should time-

lines be computed? If computed upon request, a cache could simply store copies of the

base data (recent tweets and subscription lists). In this case, maintaining cache freshness is

2

trivial—every change to the persistent store corresponds directly to a change in the cache.

However, this is not how the engineers at Twitter use the application-level cache to serve

timelines. Computing timelines on demand, even from cached base data, adds an unac-

ceptable amount of latency to the timeline check operation. Rather, the cache stores pre-

computed timelines in ready-to-read form [25]. When a user first logs into the service, her

timeline is computed on demand and stored in the cache. After this point, her timeline is

kept fresh with incremental updates that occur when new data are written (e.g., a followed

user posts a new tweet). Subsequent timeline checks return the pre-computed timeline

without any additional computation. Since timeline checks dominate the workload, the

Twitter developers decided to optimize the system for that operation. Unfortunately, this

makes cache maintenance more complex; identifying and updating the derived cache en-

tries for each write to the base data is nontrivial. For example, a new tweet by a celebrity

may be appended tomillions of follower’s cached timelines.TheTwitter developers accept

this trade-off to provide faster reads.

Materialized views

The Twitter timeline computation is split into two parts, a one-time bootstrap compu-

tation and an ongoing series of incremental updates.This construction is known as amate-

rialized view in the relational database community [28]. Amaterialized view is the result of

a database query that is stored as a separate table and kept consistent with the input tables

used in its construction. Developers can use materialized views to avoid costly query exe-

cution on each read. In trade, the database uses more disk space to store the materialized

table and takes more time to process writes to the base tables (this extra work ensures that

the materialized views are updated accordingly).

3

Perhaps the biggest advantage of materialized views in modern databases is that the

complexities of view creation andmaintenance are abstracted away. A developer can define

and query a materialized view with a few lines of SQL. The code for tracking dependen-

cies between base and derived tables and performing incremental updates is completely

encapsulated in the database. Unfortunately, this convenient abstraction is trapped in the

database, the component that will eventually become a bottleneck. To scale the applica-

tion, developers resort to reimplementing this database feature using the cache. As a re-

sult, the algorithms for computing and updating derived data are embedded in application

code.Maintaining the correctness of this code growsmore difficult as the application adds

new features, or more developers join the team.

This thesis presents a new design for software used to cache derived data in large-scale

Web applications. Our system provides an abstraction, the cache join, that allows devel-

opers to perform in-cache computations, including view materialization. Cache joins im-

prove overall system performance by eliminating communication between the application

server and the cache and simplify application code by moving the responsibility for com-

putation and maintenance into the cache.

Description and goals

Our system, Pequod, is an application-level cache. Like other application-level caches,

Pequod can be deployed into a data center to hasten the retrieval of information by appli-

cation routines. At its core, Pequod is a key-value cache that supports the usual key-value

operations (get and put). But Pequod’s strength and novelty lie in features that facilitate

the development of modern, dynamically constructed Web applications.

4

We are motivated, in large part, by a desire to improve the programmability ofWeb app-

lication-level caches. We recognize that developers are implementing sophisticated cach-

ing solutions with primitive tools, a process that is both cumbersome and error prone.We

address this problem by extending the familiar key-value interface to includemore power-

ful data manipulation primitives. Pequod is designed to provide the following features:

− In-cache computation. A fair number of Web applications cache derived data: ag-

gregate values (e.g., average rating), filtered sets (e.g., top ten stories), and lists (e.g.,

article comments). Each of these cache entries represents the result of a computa-

tion performed in an application routine. To generate or update a derived value, the

developer must fetch the input data (ideally from the cache), perform the compu-

tation, and store it into the cache. In Pequod, developers can describe basic com-

putations that execute within the cache, operating over a set of cache entries and

producing new entries. In-cache computations avoid the data transfer overhead to

and from the application server and eliminate boilerplate code.

− Automatic cachemanagement.Cachemaintenance complicates application code.

Pequod removes this burden from the application, maintaining freshness internally

by tracking dependencies between cache entries and responding to modifications.

When in-cache computations are used to produce derived data, the input and out-

put entries are added to an acyclic dependency graph. A traversal of this graph enu-

merates the cache entries that need to be invalidated or updated when an input is

modified. Implementing this type of maintenance in application code with existing

caches is possible, but tedious and clumsy.

− Updating views. Computing entries and tracking dependencies in the cache sim-

plifies cache management, but it also enables another feature: updates. For many

5

in-cache computations, the value of a derived cache entry can be incrementally up-

dated, allowing it to remain in the cache.Pequodexposes this functionality to thede-

veloper in the form of materialized views—data that are computed andmaintained

by the cache in a ready-to-read state. Using a cache to store materialized views is

not new; Pequod merely incorporates this design pattern as a first-class primitive,

making this complex mechanism more accessible.

Pequod exposes these features to application developers with a single abstraction: the

cache join. A cache join is a declarative statement that defines a computation to be per-

formed by the cache, the cache entries to use as inputs, the keys into which the results will

be stored, and the desired maintenance policy for the derived output (one-time computa-

tion or incrementally updated).Developers can use cache joins to filter, join, and aggregate

cache data with relative ease.

The overarching goal of this work is to improve Web application programmability by

transferring complexity into the cache. But improved programmability is of little value if it

comes with a significant performance penalty. Pequod is designed to be competitive with

existing application caches, offering performance that is comparable to solutions with less

expressive interfaces. Experimental results show that in-cachematerialization performs no

worse than application-managed materialization; in fact, Pequod offers a substantial im-

provement over existing caches.

Thesis overview

The remainder of the thesis presents the design, implementation, and evaluation of Pe-

quod. Chapter 2 provides a review of application-level caches, the key-value data model,

the relational data model, and database materialized views. The remainder of the chapter

6

categorizes existing techniques for caching dynamic Web applications and compares Pe-

quod with related database and caching systems.

Chapter 3 motivates the need for Pequod with two example Web applications. These

applications demonstrate the utility of materialized views for Web applications and the

difficulty of implementing this feature using existing key-value caches. One application, a

feed-based social network, uses materialization to append the latest information to each

user’s feed. Pequod essentially prefetches user feeds for quick retrieval. A second appli-

cation uses materialization to compute and maintain aggregate values that are repeatedly

queried. Incremental updates ensure that the aggregates remain fresh.

In Chapter 4 we describe two extensions to the traditional key-value data model, range

scans and relational overlays, that are used as building blocks for cache joins. With these

extensions, developers can group key-value pairs into data ranges anddecompose keys into

named components. We also discuss how Pequod can be deployed into an existing Web

architecture and how the communication pattern of the application is modified to make

use of the cache.

Chapter 5 focuses on data materialization in the cache. We present and discuss the lan-

guage used to define cache joins. The language allows developers to specify the portion

of the keyspace to be computed, the sources of data used as input, and the operator used

in the transformation. Finally, we present algorithms for generating new cache entries and

maintaining materialized ranges using incremental updates and partial re-evaluation.

Pequod is a distributed system that can be scaled to meet the demands of a growing

application.Chapter 6 describes how cache entries are stored and retrieved in a distributed

deployment. By design, each cache join invocation is restricted to a single Pequod server.

Data that is required to complete the join execution but is not memory-resident (e.g., is

7

stored on another Pequod server) is copied to the executing server and kept fresh with a

subscription mechanism. Likewise, the algorithm for incremental maintenance of derived

ranges is updated to support non-local dependencies.

Chapter 7 presents the challenges associated with evicting entries from the cache. Evic-

tion in Pequod is complicated by cache joins. In a typical key-value cache, each key is

independent, and can be evicted based on a simple policy (e.g., LRU). However, cache

entries in Pequod are neither independent nor equal with respect to eviction cost. Some

entries correspond to the derived output of materialized views and have an additional re-

computation cost if they are requested post-eviction. Likewise, the eviction of base entries

(those used as inputs to one or more cache joins) may result in a cascade of dependent

evictions. We discuss and evaluate several eviction policies and an approach to mitigate

the impact of cascading evictions in Chapters 7 and 9.

We implemented a prototype system to explore design alternatives and evaluate the

choices made. Chapter 8 describes the prototype’s construction—specifically, how data is

structured andmessages are passed—and several optimizations thatmake it performance-

competitive with commercial key-value caches. Chapter 9 presents performancemeasure-

ments anddesign analysis. Experimentation shows thatPequodperforms comparablywith

existing key-value caches formost of the workloads tested.Movingmaterialized views into

the cache improves overall performance. On one benchmark, Pequod cache joins outper-

formed application-managedmaterialized views by a factor of 1.33x and databasematerial-

ized views by a factor of 9.55x. Further, we demonstrate that the computational and storage

capacities of Pequod scale to accommodate a Web class workload.

Finally, Chapter 10 concludes.

8

Summary of contributions

View materialization is not novel; the topic is well covered in the relational database

literature. The core contributions of this thesis are derived from the application of mate-

rialized views in a new context—a key-value application-level cache. Pequod’s design ad-

dresses several challenges that arise: expressing data transformations in an intuitive way

using the key-value abstraction, computing and maintaining derived data from base data

partitioned amongstmultiple servers, andmaintaining cache correctness andperformance

in the wake of eviction. Further, Pequod supports partialmaterialization: only portions of

each view’s derived output may be resident in the cache (andmaintained) at any time. Pe-

quod is capable of materializing the whole view, but avoids doing so until it is requested.

The subset of the view that is materialized is selected dynamically based on the access pat-

tern of the application. Though some of these techniques are described in other research

systems (§2), their combination and application in the context of an application-levelWeb

cache make for a unique system design. The contributions of this thesis include:

− the cache join abstraction for expressing in-cache computations;

− algorithms for aggregating, joining, and filtering data in a key-value cache;

− techniques for efficiently tracking dependencies between cache entries;

− a distributed system design that supports cache join execution and maintenance;

− a range-based, view-aware cache eviction strategy;

− a performance analysis of cache joins on real-world workloads;

− and the Pequod software itself.

We evaluate the ideas presented in this thesis using a prototype implementation of Pe-

quod. The software is available for download at http://github.com/bryankate/pequod.

9

http://github.com/bryankate/pequod

2
Background

2.1 Existing key-value application-level caches

Read operations dominate many Web application workloads. When persistent storage

becomes a bottleneck, developers often deploy a cache to absorb application reads. App-

lication-level caches are incredibly popular with Web developers, and power some of the

world’s largest services: at Facebook [20] and Twitter [40], application-level caches pro-

cess billions of requests per second and store trillions of items [5, 34].

The popularity of these systems is due not only to performance, but also to the simple,

flexible interface presented to developers. Both memcached [30] and Redis [37], two of

the most widely deployed systems, are key-value caches. A key-value cache stores ⟨key 7→

value⟩ pairs, mapping uniquely named keys to arbitrary values. These systems provide a

core interface:

− put(k, v). Inserts a key-value pair into the cache.

− get(k). Retrieves the value stored under the key k, if it exists.

− remove(k). Removes the key-value pair stored under the key k, if it exists.

Using this basic interface, it is easy for developers to store essential application data—

for example, images, session information, or database query results—and retrieve them

quickly. Of course, caches are not limited to the key-value interface: more complex inter-

faces exist, and are useful for improving edge cases and caching structured data [34, 41].

10

But deploying an application-level cache adds complexity to the application code; the

developer is responsible formaintaining cache freshness as data aremodified. Formost ap-

plications, cached data should reflect, as closely as possible, the state of persistent storage.

Developers use expiration and invalidation to keep the cache fresh. Key-value pairs with an

explicitly defined expiration time are automatically removed from the cache. Expiration is

useful for applications that can tolerate some staleness, such as a periodically updated news

site. For applications that cannot tolerate staleness, cache entries should be made invalid

along with the precipitating database write (or soon thereafter). The developer is tasked

with identifying which entries are affected and modifying the cache by removing the en-

try or by updating it with a new value. We focus on applications that require timely cache

maintenance through updates and invalidation.

Cache maintenance is more difficult when entries represent derived data, the results of

some computation over base data. For example, if a developer caches the result of the SQL

database query

SELECT department, AVG(salary) AS avgpay
FROM employees
GROUP BY department;

that computes the average salary of employees by department, she would have to invali-

date or update the cached result when any of the base data are changed. In this case, any

change to the employees table—adding or removing a row (e.g., an employee is hired or

quits), changing an employee’s salary, or switching his group—would require action by

the application. At the very least, the developer could invalidate the cached result with ev-

ery modification to the source table. This approach would ensure correctness, but require

a re-computation on subsequent reads.The problem is harder when the scope of the query

is narrowed:

11

SELECT department, AVG(salary) AS avgpay
FROM employees
WHERE salary > 100000
GROUP BY department;

(2.1)

Invalidating the cached result for every change to the employees table is correct, but in-

efficient. A better approach would recognize that the result is conditionally dependent on

a subset of the employees table and only invalidate the cached result for changes to those

rows. Unfortunately, it is difficult to capture the knowledge of these data dependencies

in application code. In addition, it is often more efficient to implement the control logic

for invalidating and updating cache entries within the cache than to distribute the same

responsibilities amongst multiple independent clients.

2.2 Automatic cache maintenance

Several research systems are designed to reduce the burden of cache maintenance by

assuming more responsibility for producing and applying cache invalidations.

TxCache [35] is an application-level cache that tracks dependencies between cached

objects and tables in a relational database. The dependencies are used to automatically in-

validate cached objects when the database ismodified. TxCache improves application pro-

grammability by making caching transparent. Clients write queries against the database,

and query results are automatically cached. Future queriesmay return data from the cache,

the database, or a combination of the two.The system ensures that mixed results are trans-

actionally consistent (Pequod is designed to be eventually consistent). TxCache achieves

one of Pequod’s goals, automatic cache maintenance, but it only supports invalidation;

cache entries cannot be updated. Without updates, the system will not support cached

materialized views, a key design pattern used by many applications.

12

TAO [41] is a storage system and cache developed and deployed at Facebook. It is spe-

cially designed tomanage graph-structured data. Clients make changes to the graph struc-

ture by adding or removing nodes and edges and by modifying metadata associated with

each. Like TxCache, caching is transparent to the client; application code has no direct

control over cache usage, and as such, has no responsibility for maintenance. The system

mediates access to the database, routing both reads and writes through a caching layer.

As a write-through cache, TAO can guarantee that cached data are consistent with the

databasebyperforming synchronouswrites.However,TAOis a replicated cache, and repli-

cas should reflect the state of the master cache server. During a write, the TAO master

cache produces a changeset that can be applied to cache replicas. Thus, cache replicas are

updated, not invalidated.Though the cache is updated automatically, TAO is specially con-

structed for graph operations and does not allow for user-defined materialized views.

DBProxy [3, 4] is an edge cache that proxies database queries and caches results. The

system inspects incoming queries and determines if the query can be handled locally from

cached data. If not, the query is sent to a master database for execution and the results are

cached locally for future use. If the cache is populated with all the data needed to satisfy a

query, it is executed without contacting the master. The system rewrites the queries that it

sends to themaster for execution, widening the scope of constraints in an effort to prefetch

base data for the local cache. The master database sends updates to the cache servers for

insertions, deletions, and updates to cached base data. DBProxy operates as a transparent

cache.The system selects the data to cache and ensures its integrity.The system is designed

to handle repeat and overlapping queries efficiently, but is ill suited for Twitter-like work-

loads that constantly request new data. In such workloads, each request would contact the

master database.

13

Challenger et al. [11]describe an algorithm,DataUpdatePropagation (DUP), for track-

ing dependencies between cached objects (HTML pages or fragments) and underlying

database tables.The algorithmwas deployed in a system that cached the official website for

the 1998 Winter Olympic Games. The algorithm works by constructing a directed graph

in which nodes represent objects (base data or derived content) and edges represent de-

pendencies. When new data are written, the system traverses the graph to determine the

set of objects that require invalidation. The system supports pseudo-updates in the form

of prefetching: rather than waiting to generate a new object on the next access, some in-

validated objects are re-generated by a background application routine. This system eases

the burden of cachemaintenance by automatically identifying and invalidating transitively

derived data. Unlike TxCache and TAO, the mechanism is not transparent: the developer

must provide the data dependencies to the system for tracking. Pequod also tracks depen-

dencies between cache objects, but infers the relationships from materialized view defini-

tions. In addition, Pequod supports incremental maintenance of cached objects, avoiding

full re-computation in the common case (§5.5).

2.3 Materialized views

In a relational database, a view holds the results of a stored query. For example, a devel-

oper could define a view for query (2.1) as:

CREATE VIEW highpay AS
SELECT department, AVG(salary) AS avgpay

FROM employees
WHERE salary > 100000
GROUP BY department;

The view definition defines the structure of highpay and captures the constraints of the

stored query (salary greater than $100,000). To find the average salary of highly paid em-

14

ployees in the Engineering department, the client could issue the query:

SELECT avgpay
FROM highpay
WHERE department = ’Engineering’;

This abstraction nominally breaks query (2.1) into two parts, one to compute the results

and one to fetch them. However, database views are not generally executed in two phases.

Though a view may be stored temporarily by the database to improve query performance,

there is no guarantee that pre-computed results will be available at query time. Thus, non-

materialized views provide a useful abstraction but offer no significant improvement over

equivalent on-demand queries.When a database view ismaterialized [10], its contents are

stored persistently as a table. Reading results fromanup-to-datematerialized view requires

no additional computation (of the stored query).

2.4 Viewmaintenance

There are many uses of database materialized views, each with its own consistency re-

quirements. As a result, database systems have adopted several strategies for maintaining

materialized views. Gupta andMumick [21] andChirkova and Yang [14] survey and sum-

marize techniques for generating and updating materialized views.We are most interested

in strategies that keep the view as fresh as possible while minimizing the cost of reading re-

sults.These goals are consistentwith applications likeTwitter that rely onpre-computation

to handle timeline checks at scale. Thus, we concentrate on incremental view maintenance

methods [7, 22] that update a view to reflect individual changes rather than recomputing

the whole view or applying changes as a batch.

Materialized views can bemaintained eagerly or lazily. An eager viewmaintenance strat-

egy updates derived results synchronously with the precipitating change to the underlying

15

data. Eager maintenance trades more complex writes (to base data) for faster reads (of

derived data). In contrast, a lazy view maintenance strategy [42] defers maintenance op-

erations until the next access to derived data or until the system is lightly loaded and can

process updates using idle cycles. When base data are modified, the system computes a

minimal changeset of affected tuples along with other contextual information (e.g., the

state of the base relations prior to the modification) and logs it for later application. Pe-

quod allows developers to apply either approach according to application needs.

2.5 View selection

In the realm of relational databases, view selection refers to the problem of determining

which views should be materialized to optimize application performance. This is typically

an offline process undertaken by developers, though automated approaches [2] have been

proposed in the literature and implemented in commercial databases. Similar tools could

be applied to view selection in an application-level cache, perhaps with more weight given

to space and expected query frequency. However, we assume that this problem is solved

by the developer, who explicitly defines cached views.

Luo proposed partial materialized views (PMV), caching portions of the results of long

running queries to quickly generate partial results in future queries [29]. For example, if a

query is expected to yield 5,000 results in 30 seconds, PMVs can be used to return the first

100 rows as soon as the query begins. This approach presumes that the requester gains

some advantage from inspecting the early, partial results while the remainder are com-

puted. The cached PMVs are invalidated when changes are made to the base tables, but

no incremental updates are performed. PMVs are not particularly applicable in a cache

setting, where on demand computation is avoided.

16

Zhou et al. [43, 44] describe dynamic materialized views (DMV), a method for com-

puting and caching portions of a materialized view (in a relational database) based on ap-

plication access patterns. Developers install materialized view definitions and policies that

guide dynamicmaterialization. DMV ismotivated by the desire to save space. Rather than

materializing the view in full (as is standard for database materialized views), DMV be-

gins answering queries with on demand computation. Once partial results are generated,

the installed policy—for example, one that admits partial results based on frequency of

access—determines if they should be stored. Stored results are kept fresh through incre-

mental maintenance.

The design of partial, dynamic materialization in DMV is extremely relevant to the key-

value cache context, in which there may be only enough space to store a portion of the de-

fined views at any given time. Pequod takes a similar approach to view generation. How-

ever, there are some differences that distinguish the two systems. For example, Pequod

materializes portions of the view in contiguous ranges. In DMV, output tuples can be gen-

erated individually based on the contents of a special control table.The rows in the control

table correspond to input values that have been approved for materialization (by an in-

stalled policy). A predicate is evaluated against the control table to determine if a portion

of the view should be materialized. In this way, DMV could generate non-contiguous por-

tions. However, this approach places some limitations on the types of inputs that can be

used in the predicate (e.g., aggregates). This limitation prohibits some desirable composi-

tion, for example, a view that filters the output of an aggregate view. Pequod does not have

this limitation, but may incur more overhead to produce non-contiguous output.

17

2.6 Distributed materialized views

Agrawal et al. [1] added materialized views to PNUTS [16], a distributed, persistent

store that exposes a relational data model to users. Internally, tables are implemented with

column families [13], a variant of the key-value model. Like Pequod, views are imple-

mented as partitioned tables, are eventually consistent, and are maintained with asynch-

ronous, incremental computation. However, this work did not support partial material-

ization or some of Pequod’s performance annotations. Interestingly, the authors use a dif-

ferent execution strategy for aggregate joins, which use a distributed query to reduce data

movement. Pequod might benefit from a similar strategy.

2.7 Summary

Pequod is not thefirst system to automate cachemaintenanceby trackingdependencies,

materialize viewspartially anddynamically, or update views incrementally usingbotheager

and lazy strategies. However, Pequod is the only system to combine these features in the

context of a distributed key-value application-level cache. The end result is a system with

the convenience of materialized views and the performance of a key-value cache.

18

3
Motivation

We use two example Web applications to demonstrate in-cache view materialization with

Pequod. These applications are Twip, a Twitter-like microblogging service, and Newp, a

Reddit-like news aggregator [36]. Both are introduced here and referenced throughout

the remainder of the thesis.

The Twip application focuses on the core functionality of Twitter, constructing user

timelines. Twip supports three enduser operations: a user can post tweets, followother users

(subscribe to their tweets), and check his timeline.This last operation is themost complex:

when a user, called the requester, checks his timeline, Twip returns, in a time-sorted list, all

recent postsmade by any other user that the requester follows.Other aspects of theTwitter

service (e.g., search and trending topics) are not represented. Twip usesmaterialized views

to compute and maintain user timelines.

Newp is a simplified news aggregator; links to articles are submitted by end users and

are displayed in some ranked order for others to read. The application supports four op-

erations. A user can post a new article, comment on an existing article, place a vote for an

article that may affect its ranking on the site, and browse an article. Other features of real

applications like Reddit, such as voting on comments and constructing a top-N listing of

popular articles, are not modeled in Newp.

19

When a Newp article is browsed, its contents are displayed to the end user. These in-

clude the link associated with the article, the article’s current vote count, and the attached

comment threads, where each comment is accompanied by the karma of its author. An

author’s karma is computed as the sum of the vote counts for all of the articles that she has

posted. Newp usesmaterialized views tomaintain frequently read aggregate values (article

vote counts and user karma) and organize article data into a form optimized for browsing.

The following sections present exercises in caching the Twip and Newp applications

using existing technologies. This exposition outlines the challenges inherent to each ap-

plication and sets the stage for Pequod. For concreteness, the persistent storage layer is

assumed to be a relational database with materialized view support.

A note on terminology: The term client is used throughout this document in reference

to an application routine that executes within the data center and issues requests to the

cache. Humans visiting a Web site are referred to as end users.

3.1 Caching Twip

The Twip application stores two types of data into persistent storage, subscription lists

and posts. In SQL, these tables might be defined this way:

CREATE TABLE sub
(user varchar(32), follows varchar(32));

CREATE TABLE post
(poster varchar(32), time int, content varchar(140));

(3.1)

The above table definitions are used to illustrate the base relations used by the application

for timeline construction; supporting tables, optimizations, and constraints are omitted

for clarity. If one user subscribes to another, an entry is added to the sub tablemapping the

subscriber’s user ID with that of the user being followed. When a user makes a new post,

20

it is inserted into the post table with a timestamp.

To refresh the user ann’s timeline to contain posts on or after time 100, the application

could issue the SQL query:

SELECT post.time, post.poster, post.content
FROM sub, post
WHERE sub.user = ’ann’
AND sub.follows = post.poster
AND post.time >= 100

ORDER BY post.time;

(3.2)

While straightforward, this query is potentially costly to execute. Disk access and concur-

rency control mechanisms (i.e., locking) can cause long delays. In addition, the sub and

post tables are joined and filtered on each query. Executing frequent, expensive, latency-

sensitive queries on a persistent database is inadvisable. Timeline checks must be cached.

One option is to store copies of base data (rows from the sub and post tables) in the

application-level cache. To construct ann’s timeline from the cache, the application first

retrieves and parses her subscription list, represented by the key-value pair ⟨sub|ann 7→

bob|jay|sue⟩. Next, it fetches andparses the posts of users bob, jay, and sue. For example,

the key-value pair ⟨post|bob 7→ 100:Hi|102:Bye⟩, represents user bob’s posts of Hi at time

100 and Bye at time 102. Finally, the application assembles the timeline, returns it to the

end user, and stores it into the cache as tline|ann.

This process is identical to the above SQL query, it is just shifted into the application.

The base data cache eliminates some overheads (assuming cache hits) but introduces oth-

ers. For example, two rounds of communication (and, for typical users who follow many

others, hundreds of requests in total) are required to transfer the base data to the back-end

server running the application code. And if ann refreshes her timeline one second later,

the same data are transferred to the application and joined, effort that is superfluous in the

likely scenario that nothing has changed.

21

An alternative caching strategy for Twip mimics the materialized view approach taken

by the Twitter engineers. Each user has a pre-computed timeline stored in the cache (for

example, tline|ann). To check a user’s timeline, the application fetches this key-value

pair from the cache. If present, the value is used as-is. If not, the application computes

the timeline from base data and stores it into the cache for future use, as above. After the

initial computation, the application keeps the cached timelines fresh through incremen-

tal maintenance. For example, when a user makes a new post, the application adds the

post to the previously cached timeline of every user that follows the poster. Thus, inher-

ent in this application-managed materialized view is a performance trade-off. The applica-

tion avoids on demand computation in the common case, reducing the latency of timeline

checks. In trade, writes are more complex. The application must identify all cache entries

that depend on the valuewritten and update each accordingly. Each update uses system re-

sources (memory, CPU, network bandwidth) and represents a potential overhead: there

is no guarantee that the update will ever be read, thus making some updates superfluous.

Materializing timelines is an acceptable performance trade-offgiven thehighly timeline-

skewed workload of Twitter [25], but what is the impact on application programmabil-

ity?Maintaining the cached timelines is not necessarily a trivial task.What happens if two

users post concurrently and have followers in common? Is it the application’s job to lock

keys to safely read-then-update or does the cache have an atomic append command?What

happens to the cached timeline if a user un-follows another user or deletes a post? These

questions are answerable by the application developer, but the solutions certainly add un-

wanted complexity.

The above caching strategy represents an application-managed materialized view. The

tline keys are just a rearrangement of base data that facilitates timeline checks. Appending

22

new posts to the appropriate tline keys is a form of view maintenance. These features

exist in relational databases. For example, the actions taken by the application are roughly

equivalent to the SQL command:¹

CREATE MATERIALIZED VIEW tline AS
SELECT sub.user, post.poster, post.content, post.time
FROM sub, post
WHERE sub.follows = post.poster;

(3.3)

The statement establishes a new table, tline, that stores the pre-computed timelines of all

users.The inputs to this view are the sub and post tables, and the operator that transforms

the inputs is a natural join.We assume the database applies a viewmaintenance policy that

will update the tline table whenever a transaction commits that modifies either sub or

post.

This expression is not too complex, but its real benefit is how simple itmakes the expres-

sion of timeline queries. Query (3.2) can now be expressed like this:

SELECT * FROM tline
WHERE user=‘ann’
AND time >= 100;

(3.4)

Thus, important application queries get simpler, thanks to a materialized view definition

that is specified only once.

Database-managed materialized views are appealing. View definition is succinct, cre-

ation and maintenance is contained within the database, and application operations map

directly to simple database queries. The downside is performance in a caching role, which

is significantly limited with respect to key-value application-level caches. To be fair, the

database should not be expected to handle the timeline check workload in addition to its

primary responsibility, reliably persisting application data. Disk latency and concurrency

¹Extensions to the SQL language vary by product. If explicit materialized view definitions are not sup-
ported, they can often be approximated using other database features, such as table triggers.

23

management overheads are unavoidable in the persistent store. Existing application-level

caches can be deployed to augment the database and absorb application read requests

(such as timeline checks), but lack the convenience offered by databasematerialized views.

Pequod provides the power and simplicity of materialized views with the performance of

a key-value cache.

3.2 CachingNewp

The Newp application comprises three types of base data: article links, comments, and

votes. To store this information in a relational database, the application developer might

choose tables like:

CREATE TABLE article
(aid int, author varchar(32), link varchar(255));

CREATE TABLE comment
(cid int, aid int, user varchar(32), msg varchar(255));

CREATE TABLE vote
(voter varchar(32), aid int);

(3.5)

Of course, these tables are simplified for illustrative purposes and omit details required

of a real service like Reddit. The article table holds basic information about the articles

submitted by users, including a unique identifier. Likewise, the comment and vote tables

record the relevant article metadata.

When a user selects an article to browse, the applicationmust assemble the relevant data

for the response. To browse article 77 without the assistance of a cache, the application

might issue a SQL query like:

24

SELECT article.aid, article.author, article.link,
comment.user, comment.msg,
karma.val, COUNT(vote.aid) AS vcount

FROM article
LEFT JOIN comment ON article.aid = comment.aid
LEFT JOIN
(SELECT article.author, COUNT(*) AS val

FROM article, vote
WHERE article.aid = vote.aid
GROUP BY article.author) AS karma

ON comment.user = karma.author
JOIN vote ON article.aid = vote.aid
WHERE article.aid = 77
GROUP BY article.aid, comment.cid, karma.val;

(3.6)

The above query retrieves all of the information necessary to render an article page. How-

ever, it contains two computations, a simple count of votes for the article requested and

a more complicated karma computation for each user that has commented on the article.

Computing karma on every article access is wasteful and not sustainable in practice. The

application developer could replace the inline vote count and karma computations with

materialized views:

CREATE MATERIALIZED VIEW vcount AS
SELECT aid, COUNT(*) AS val
FROM vote
GROUP BY aid

CREATE MATERIALIZED VIEW karma AS
SELECT article.author, COUNT(*) AS val
FROM article, vote
WHERE article.aid = vote.aid
GROUP BY article.author

(3.7)

Like thematerialized view inTwip, these views rearrangebasedata into forms that aremore

convenient to access.Newp storesaggregate values in thevcount andkarma tables, avoiding

the costly scan-filter-count operations it had performed for each execution of query (3.6).

With the materialized views in place, the query to fetch an article is simplified to:

25

SELECT article.aid, article.author, article.link,
comment.user, comment.msg, karma.val, vcount.val

FROM article
LEFT JOIN comment ON article.aid = comment.aid
LEFT JOIN karma ON comment.user = karma.author
JOIN vcount ON article.aid = vcount.aid
WHERE article.aid = 77
GROUP BY article.aid, comment.cid, karma.val;

(3.8)

Materializing aggregate data makes sense in this context. Like Twip, the Newp work-

load is skewed in favor of read operations; doing more work to maintain views during

write operations is justified. Unfortunately, a database-only architecture cannot provide

the performance required of this application. The real Reddit service makes extensive use

of caching and simple storage. In addition, the application uses a background queue to pre-

compute and cache data, including user karma, in response to new data. Interestingly, 80%

of Reddit’s traffic is generated by unregistered users (“lurkers”) who always see cached

content. These requests are handled by static caches and a content distribution network

(CDN) [19]. Nonetheless, maintaining vote counts, karma, and comment lists is of the

utmost importance to the success of the site. Its registered users, who generate and cu-

rate the content, rely on data that are accurate and fresh. The Newp developer could use

application-managed materialized views to keep cached copies of these data. Pequod can

make some of these tasks simpler by moving the burden of cache maintenance from the

application into the cache itself.

26

4
Usage

In this chapter we describe how Web application developers deploy and interact with Pe-

quod.We introduce somebasic extensions to the traditional key-value interface and lay the

groundwork for cache joins.

4.1 Data ranges

Pequod presents a familiar key-value abstraction to application developers. Keys and

values in Pequod are arbitrary strings, and the cache interface includes the usual put, get,

and remove operations. However, Pequod is internally organized as an ordered store. By

storing keys in sorted order, Pequod incorporates a useful primitive, the data range. An

additional operation, scan(first, last), returns a list of key-value pairs, lexicographically

ordered by key, that fall within the half-open range [first, last).

By manipulating the format of the cache keys, an application developer can form data

ranges that are meaningfully grouped for quick retrieval. A common prefix can be used to

create a set of key-value pairs; for example, the key format img|userid|imgid would allow

all of the images associated with a particular user (identified by userid) to be fetched with

a single scan. Adding a timestamp to the key (img|userid|time|imgid) format turns this

range into a sorted set, allowing the application to query specific time spans for a given

user. Note that Pequod always applies a canonical (lexicographic) ordering to keys—it is

up to the developer to exploit this ordering in a domain-specific way.

27

In many situations Pequod manipulates data in entire ranges rather than by individual

key. Data ranges are used to define materialized views, (§5.1) track dependencies of de-

rived data (§5.5), manage data movement between cache nodes (§6.2), and evict data

from the cache (§7.1). However, this primitive comes at a cost; Pequod must store the

key-value pairs in sorted order, and thus cannot execute most cache operations in O(1)

time. Applications that do not take advantage of data ranges will certainly perform better

with another caching system. However, experimentation shows that Pequod can outper-

form other caches for workloads that incorporate materialized views—a consequence of

in-cache computation and clever optimizations.

4.2 Relational overlays

Fromaprogrammability perspective, databasematerialized views are appealing because

they succinctly define how derived data are constructed from available inputs. A view’s

definition is declarative: developers state the desired output, the sources of data, and the

constraints that must be satisfied before output is generated. These declarative statements

are constructed using the relational data model [15], in which tuples of data are arranged

into relations (in SQL terms, rows into tables).The elements of a tuple (a column in SQL)

are referable by name, as are the relations.

Ideally, Pequod would borrow this approach, allowing developers to make similar view

definitions in the application-level cache. But Pequod is not relational, so creating a view

definition requires some extension to the basic key-value data model (which treats keys

and values as opaque strings). This is accomplished by embedding information within the

keys; developers treat keys as tuples, adding “columns” of data that can be referenced by

name. Keys are grouped into “tables” by adding a common prefix to the key. For example,

28

the key format

img|userid|imgid

defines a relation, img, consisting of tuples with two named elements, userid and imgid. In

terms of the key-value model, this relation is just a set of key-value pairs with a common

prefix. As in any key-value cache, the keys are still used holistically to uniquely identify val-

ues.However, if the developer informs Pequod of the key formats, the system can interpret

the keys as tuples, essentially layering a relationalmodel on top of the key-valuemodel.We

refer to this mapping as a key’s relational overlay.

Relational overlays allow developers to define cache joins using a declarative syntax.

Cache joins use concepts from relational algebra—joining, projection, filtering, and agg-

regation—to produce new arrangements of cache data.

An important distinction between database materialized views and Pequod cache joins

is the visibility of the execution strategy. In a database, the relational model is used to de-

clare what data should be returned by a query; how the data are generated (i.e., the order

in which data are scanned, joined, and filtered) is generally left to the database query plan-

ner. Pequod also uses a query planner, but takes additional guidance from the developer; a

cache join both declaratively defines the output and specifies the exact execution strategy.

The details of cache join execution are discussed in §5.3.

4.3 Deployment

Pequod is deployed in the communication path between the back-end servers execut-

ing application routines and the persistent storage service. Once deployed, the communi-

cation pattern of the applicationmust be changed so that the cache is used to absorb reads

that were formerly directed at the persistent store.

29

Pequodsupports several commoncacheconfigurations,whicharedepicted inFigure4.1:

− Look-through.Theapplication first attempts to read from the cache. In the event of

a cache miss, the application issues another read request to the persistent store, the

results of which may then be stored in the cache for future access. The application

writes data to both the cache and the persistent store.

− Write-through. The cache is inserted as a layer between the application and the

persistent storage service. All reads and writes pass through the cache, which may

block client requests while the persistent store is accessed.

− Write-around. The application directs all read requests to the cache, which may

defer to persistent storage in the event of a miss. The application sends writes only

to persistent storage. The cache monitors persistent storage for changes, allowing

application writes to indirectly influence cache entries.

Pequod is largely agnostic to the deployment configuration chosen by the developer;

cache joins execute identically in each, transformingdata that are available in the cache into

derived output and keeping that derived data fresh as changes occur. The supported con-

figurations differ in the mechanisms used to populate the cache—that is, how data from

the persistent store make their way into Pequod. These mechanical details are not perti-

nent to the core cache join algorithm, and we only mention the configuration options for

context. We do not advocate a specific deployment configuration, and the prototype im-

plementation supports each option—at least to the extent needed for proof-of-concept.¹

¹At present, the prototype implementation is missing a feature—the ability to distinguish between an
empty data range and a missing data range—that is needed to support a true look-through deployment.

30

Look-through

Write-through

Write-around

Persistent
Storage

Persistent
Storage

Persistent
Storage

Application
Code

Application
Code

Application
Code

Pequod

Pequod

Pequod

read

write

read (miss)

write

read

write

read

write

read (miss)

write

read (miss)

monitor

Figure 4.1:Three cache access patterns supported by Pequod. In all three cases, Pequod is made
aware of every base data write for the purpose of keeping materialized data fresh.

31

5
Cache joins

This chapter covers the details of Pequod cache joins: how they are specified and used to

generate derived data, how updates aremade to derived ranges, how they are composed to

create complex behaviors, and how they are parameterized to provide alternate semantics.

5.1 Specification

A cache join is a declarative statement that relates a range of output keys to a set of in-

put key ranges, defining how output values are calculated from input values. Application

developers can install new cache joins with the addjoin command.The cache join can be

used immediately; a subsequent scan of the output range will cause the queried range to

be materialized on demand. By default, Pequod will maintain this range until it is evicted

or removed. Thus, subsequent scan operations will return fresh data quickly.

The join specification defines the relational structure of the keys and how output key-

value pairs are calculated from input key-value pairs. It has four parts:

1. An output overlay defines the format of output keys;

2. One or more source overlays select keys whose values are used to compute results

and define the operators applied to these keys;

3. Optional performance annotations guide query execution (see §5.6);

4. and slot definitions tell Pequodhow tounpack akey into componentoverlay values—

for example, by looking for vertical bars, or by taking fixed numbers of bytes.

32

<cachejoin> ::= <key> “=” <sources> “with” <slotdefs>;
<sources> ::= <source> | <sources> <source>;
<source> ::= [<maintain>] <operator> [<update>] <key>;
<maintain> ::= “push” | “pull” | “snapshot” <number>;
<operator> ::= “check” | <boundedop> | “min” | “max” | “sum”;
<boundedop> ::= “copy” [<bounds>] | “count” [<bounds>];
<bounds> ::= [“lbound” <number>] [“ubound” <number>];
<update> ::= “lazy” | “eager”;
<key> ::= <text> <keybody>;
<keybody> ::= <text> | <slotname> | <keybody> <keybody>;
<slotname> ::= “<” <text> “>”;
<slotdefs> ::= <slotdef> | <slotdef> “,” <slotdefs>;
<slotdef> ::= <text> “:” <number>;

Figure 5.1:The cache join grammar. This grammar closely resembles the grammar used in the
prototype implementation; some keywords have been updated in this text for clarity.The defini-
tions for text literals and numbers are omitted for brevity.

Figure 5.1 summarizes the grammar. For clarity, cache join examples throughout this

text omit the slot definition portion of the specification in favor of a more readable de-

limited form (using ‘|’ and italicized slot names). The prototype implementation relies on

explicit, fixed-length slot definitions to properly parse output and source key formats.

From the cache join specification, Pequod determines the data ranges involved in the

view’s construction, the relational overlays to apply to the keys, how the view should be

constructed andmaintained, and how output values are produced. Pequod uses this infor-

mation in forward execution of a cache join (§5.3) and in subsequent incremental main-

tenance tasks (§5.5).

For example, consider a simple movie database that stores information about movies

(e.g., title and release date) and actors. We can define a cache join that produces some de-

rived information, the number of movies an actor made in each year, by installing

33

filmcount|actor|year =
check appearedin|actor|title
count released|title|year;

(5.1)

The cache join produces output keys prefixed with filmcount. The format of the output

key embeds other information—the values for named slots actor and year—that is gath-

ered by performing a natural join of two source ranges. An output key is produced if the

join’s constraints are satisfied; specifically, if the common slots (just title in this case) are

equivalent in the sources being joined. This join will produce a unique key-value pair for

every actor-year combination. For comparison, the equivalentmaterialized viewdefinition

in SQL is:

CREATE MATERIALIZED VIEW filmcount AS
SELECT appearedin.actor, released.year, COUNT(*)
FROM appearedin, released
WHERE appearedin.title = released.title
GROUP BY appeardin.actor, released.year;

(5.2)

There are parallels between the two declarative statements. Each specifies the output con-

tent (the actor, year, and count of movies), the criteria for joining the two sources (equiv-

alent title), and the computation that occurs (group inputs by actor-year and produce an

aggregate value). The SQL definition is more verbose because the language is more com-

plex, supporting many features from the relational algebra. The cache join language sup-

ports only one type of join from the relational algebra—the natural join, inwhich the inter-

sected columnsmust be equivalent to produce an output tuple—so its syntax ismuch sim-

pler.The join constraints are expressedby theoverlapping slot definitionsbetween sources.

Grouping is accomplished by naming slots that must appear in the join’s output overlay. In

this case, a count is stored in filmcount keys with a unique combination of actor and year.

34

Given the cache join (5.1) and the cache contents

⟨appearedin|Tom Hanks|Apollo 13 7→∅⟩
⟨appearedin|Tom Hanks|Forrest Gump 7→∅⟩
⟨appearedin|Tom Hanks|Philadelphia 7→∅⟩
⟨appearedin|Tom Hanks|Sleepless in Seattle 7→∅⟩
⟨appearedin|Tom Hanks|Toy Story 7→∅⟩

⟨released|Apollo 13|1995 7→∅⟩
⟨released|Forrest Gump|1994 7→∅⟩
⟨released|Philadelphia|1993 7→∅⟩
⟨released|Sleepless in Seattle|1993 7→∅⟩
⟨released|Toy Story|1995 7→∅⟩

Pequod will produce the output

⟨filmcount|Tom Hanks|1993 7→ 2⟩
⟨filmcount|Tom Hanks|1994 7→ 1⟩
⟨filmcount|Tom Hanks|1995 7→ 2⟩

Note that the values of the base data entries (appearedin and released) have no bearing

on the output produced. In fact, they are empty.This is a function of the operators used in

the join specification, check and count. The check operator indicates to Pequod that only

a source’s keys are relevant to the join; the values are ignored.The count operator produces

an output value—in this case, the number of movies associated with a specific actor in a

specific year—by counting key-value pairs. Thus, no source values are needed to produce

the desired output.

The Pequod cache join grammar defines a small set of built-in operators. Aggregate op-

erators, such as count, behave like SQL’s aggregate functions, combining many sources

into a single output. The aforementioned check operator tells Pequod to ignore source

values, and the copy operator indicates that a source’s value should be copied verbatim as

an output value. The exact set of provided operators is not fundamental to the concept of

cache joins; thosementioned in Figure 5.1 represent core functions that are currently built

into the Pequod prototype implementation.

35

5.2 Twip andNewp revisited

Thecaching solutions forTwip andNewp (§3.1, §3.2) demonstrate thatmaterialization

is a powerful design pattern that comes at considerable implementation cost. By deploying

Pequod, the applications could be written using straightforward commands. This section

presents an updated approach to caching both applications based on Pequod cache joins.

As before, the Twip application will cache a combination of base and derived data. For

example, the key-value pair ⟨sub|ann|bob 7→ 1⟩ indicates that user ann is subscribed to

user bob. (The values associated with sub keys are ignored in Twip, and are therefore irrel-

evant). In addition, the pair ⟨post|bob|100 7→ Hi⟩ would cache user bob’s tweet of Hi at

time 100. The Twip developer would like to cache a pre-computed timeline for each user.

The Twip timeline cache join

tline|user|time|poster =
check sub|user|poster
copy post|poster|time;

(5.3)

defines the value of cache key tline|user|time|poster as a copy of the value of key post|

poster|timewhenever sub|user|poster exists. In other words, Pequodwill execute a natural

join of sub and post keys and create a new tlinewhen the poster is in the user’s subscrip-

tion list.

Note that the cache join specification is generic—it is not specific to any user. Pequod

uses contextual information from the client request to materialize concrete ranges.

36

For example, given the cache contents

⟨sub|ann|bob 7→ 1⟩
⟨sub|ann|ken 7→ 1⟩

⟨post|bob|100 7→ Hi⟩
⟨post|bob|110 7→ Bye⟩
⟨post|jay|105 7→ I don’t like Ann!⟩
⟨post|ken|100 7→ My cat is grumpy.⟩

the timeline cache join can derive the set of keys that constitute user ann’s timeline

⟨tline|ann|100|bob 7→ Hi⟩
⟨tline|ann|100|ken 7→ My cat is grumpy.⟩
⟨tline|ann|110|bob 7→ Bye⟩

The application client can request the derived timeline range by issuing a scan command.

For example, to request the portion of user ann’s timeline since time 100, the client would

issue the command

scan(tline|ann|100, tline|ann⁺) (5.4)

This request instructs Pequod to return key-value pairs in the interval [tline|ann|100,

tline|ann⁺).¹ When this command is received by Pequod, the system checks whether

the derived range is already present; if so, its contents are returned, if not, Pequod ensures

that the inputs are cache resident, executes the cache join (restricting the derived range

based on the context of the request), and starts tracking the inputs so that future cache

modifications are reflected in the derived range on the next request.

Theparameters of the client scanquery limit the scopeof automatic updates. For exam-

ple, query (5.4) issues a request for an open-ended range (it has no specific upper bound).

As a result, if any of the users that ann follows makes a new post after time 100, her cached

¹The notation tline|ann⁺ represents the upper bound of the tline|ann range: [tline|ann,
tline|ann⁺) contains exactly those keys starting with tline|ann. In the Pequod prototype implemen-
tation, this upper bound is implemented by the unsightly string tline|ann}.

37

timeline will be updated automatically. If instead the client had issued a more specific re-

quest, say for the interval [tline|ann|100, tline|ann|110), Pequod would still update

the derived timeline, but only for posts between time 100 and 110. Twip developers use

open-ended intervals to ensure that user timelines are kept fresh as time moves forward.

The details of cache join scoping and incremental maintenance are presented in §5.3 and

§5.5.

Pequod executes cache joins using only input data that are cache resident. Further, Pe-

quod can only maintain freshness of derived data if it is aware of changes that are made

to its inputs post-execution. It is up to the application developer to ensure that Pequod

is populated (and updated) with the data needed to produce meaningful results. Several

deployment options for integrating Pequod with persistent storage are discussed in §6.5.

Until then, we assume that Pequod contains the data needed to produce the desired cache

join output.

With Pequod, the Twip application is simply constructed. New posts and subscriptions

are written to the persistent store and cached in Pequod. Timelines are fetched from the

cache by scanning tline|user ranges.The timeline cache join is used to derive these ranges

on demand. Once produced, Pequod keeps the derived timelines fresh by monitoring the

base data for changes and applying the appropriate updates.

The same strategy can be used forNewp.New articles are written to the persistent store,

as are comments and votes. These data are also cached for fast access.

38

For example, Pequod might contain cached Newp articles, comments, and votes:

⟨article|bob|01 7→ http://xkcd.com/327/⟩
⟨article|bob|02 7→ http://en.wikipedia.org/wiki/Eddie_Kohler⟩
⟨article|ann|01 7→ http://github.com/bryankate/pequod⟩

⟨comment|bob|01|100|bob 7→ This is the best site.⟩
⟨comment|bob|01|103|ken 7→ LOL⟩
⟨comment|bob|01|305|ken 7→ I like cats.⟩
⟨comment|ann|01|110|ken 7→ First post.⟩
⟨comment|ann|01|200|ann 7→ Serious replies only!⟩

⟨vote|bob|01|ken 7→∅⟩
⟨vote|bob|01|bob 7→∅⟩
⟨vote|bob|01|ann 7→∅⟩
⟨vote|bob|02|ann 7→∅⟩
⟨vote|ann|01|ken 7→∅⟩
⟨vote|ann|01|bob 7→∅⟩

In this scheme, an article is uniquely identified by both the user that posted the article and

a sequence number. Together, they form the article identifier (aid), but are used separately

in cache join specifications (as seen below).

To browse the contents of the article with aid bob|01, the Newp client would issue two

commands in parallel:

get(article|bob|01)
scan(comment|bob|01, comment|bob|01⁺)

But how should the application obtain the vote count for the article and the karma for each

user? The client could fetch the vote data from the cache, but retrieving the base data and

computing these values on each access is wasteful. Rather, Newp uses the vote count cache

join and the karma cache join:

vcount|aid = count vote|aid|voter;

karma|author = count vote|author|seq|voter;
(5.5)

to compute and cache these values. Note that the same vote key-value pairs are used in

both joins, but are assigned different overlays. In the karma join, the article identifier is

39

parsed as two slots, the author of the article and a sequence number. The vote count join

interprets the same bytes as a single slot. The above cache joins filter the vote keys to pro-

duce aggregate values:

⟨vcount|ann|01 7→ 2⟩
⟨vcount|bob|01 7→ 3⟩
⟨vcount|bob|02 7→ 1⟩

⟨karma|ann 7→ 2⟩
⟨karma|bob 7→ 4⟩
⟨karma|ken 7→ 0⟩

Thus in addition to fetching the article details and comments, the Newp application also

fetches the article vote count with get(vcount|bob|01). User karma cannot be fetched in

parallel; the set of users that commented on the article is not known until the first round of

queries is returned. At that point, the karma for all commenters may be fetched in parallel

with get(karma|user) queries. The vote count and karma cache joins simplify the Newp

application relative to a strategy that computes the same values on demand. An extension

to this approach that further simplifies the application code is discussed in §5.7.

Twip andNewp are just two examples of howPequod cache joins can be used to remove

complexity fromWeb applications. In general, the class of applications for which the cache

join is useful is equivalent to that for which database-managed materialized views are ad-

vantageous. With Pequod, the Twip developer can achieve the same effect as the Twitter

developers, but with less effort on the part of the application. A single declarative expres-

sion specifies how timelines are generated from scratch, a process we call forward execution,

and how derived ranges are kept fresh through incremental maintenance.The end result is

application code that looks and behaves like a databasematerialized view—compare (3.3)

and (3.4) with (5.3) and (5.4)—but performs like an application-level cache.

40

5.3 Forward execution

This section describes the semantics and implementation of cache join execution. The

focus is on forward query execution, which starts from base data. As we will shortly dis-

cover, generating a join’s output from scratch involves potentially costly base data scans

and metadata queries. We prefer, if at all possible, to perform most of the computation in

the cache with incremental updates (§5.5). Nonetheless, we begin by describing forward

execution precisely because it is used to bootstrap a join’s output and lay the groundwork

for incremental maintenance.

Once a cache join specification is installed, the application can start requesting data in

the output range. A scan of this range will prompt Pequod to check if there exists up-to-

date output that can be returned immediately. If not, the output is generated by a forward

execution of the installed cache joins that cover the requested range. To illustrate the basics

of cache join execution, we assume in this section that every cache join is executed from

scratch, ignoring the results of prior executions.We also assume (until §6.3) a single thread

of execution.

Pequod uses a nested loop strategy to execute join queries, iteratively joining the source

ranges listed in the cache join specification. The goal of the algorithm is to generate key-

value pairs that conform to the join’s output overlay. To emit output key-value pairs, Pe-

quod must construct a key, by filling each slot in the output range’s relational overlay, and

compute a value. The former is accomplished by establishing a slot set that is filled as the

algorithm advances. To begin, the slot set is populated with information from the scan

request.The request itself offers some context (establishes the initial assignments for some

slots) and narrows the scope of the join execution (i.e., to a specific user). The slot set

is progressively filled by scanning the source ranges and using the relational overlays of

41

the source keys to fill in the missing context. Ideally, the scope of the source range scan

narrows with each nested loop iteration (because more of the slot set is defined). When

Pequod scans the primary source (the last source listed in the join specification), the slot

set is checked for completion (that all slots are assigned); if complete, an output key is

constructed from the set and the value is computed using the operator.

For example, consider a forward execution of theTwip timeline cache join for user ann’s

timeline check (reproduced below):

tline|user|time|poster =
check sub|user|poster
copy post|poster|time;

scan(tline|ann|100, tline|ann⁺)

To populate the initial slot set, Pequod will parse the keys that define the range bounds of

the scan request according to the output range’s format (in this case, tline|ann|100 and

tline|ann⁺ are parsed using the overlay tline|user|time|poster). Any slot that is com-

monly defined in both keys can be added to the slot set. In this case, the initial slot set is

{user 7→ ann, time 7→ ∅, poster 7→ ∅}. It is correct to omit an assignment of time in the

initial slot set even though a time was given in the scan request. The slot set represents

values that must be common of all keys selected by the join (that contain that slot). If it

were filled with the value 100, the join would only emit posts at time 100. Thus, the slot is

initially left blank, and is assigned a value as the post source is processed.

Though not used as a join constraint, the time is used to define containing ranges for each

scan of the key-value store. A containing range is effectively the inverse of a slot set: given

a slot set, a source overlay, and the requested output key range, Pequod can calculate a

minimal range of source keys that might affect the scan’s results. For example, given ann’s

42

compute_cache_join(first, last, join):1
ss := join.slotset(first, last)2
process_sources(first, last, join, ss, 0)3

4
process_sources(first, last, join, ss, srcidx):5

src := join.source(srcidx)6
[key−, key+) := ss.containingrange(src, first, last)7
for each ⟨key 7→ val⟩where key ∈ [key−, key+) and key matches src.overlay(ss):8

ss’ := ss.fillslots(key)9
if not join.isprimary(srcidx):10

process_sources(first, last, join, ss’, srcidx + 1)11
else:12

emit ⟨join.outputkey(ss’) 7→ src.operator(val)⟩13

Figure 5.2:Pseudo-code for the forward cache join execution algorithm, presented in a recursive
form. The list of sources is processed in order, iterating over the keys in that source’s containing
range. The slot set is updated to reflect the information in each key as it is processed. When the
primary source is reached, the output key-value pairs are constructed and stored in the cache.

timeline request and the slot set {user 7→ ann, time 7→ ∅, poster 7→ bob}, the minimal

containing range for the post source would be [post|bob|100, post|bob⁺). Any post out-

side that containing rangewould either notmatch the required poster, or notmap to anout-

put key in the requested output key range. Since Pequod should support any application

and provide general key-value cache semantics, some care is taken to handle each query

correctly. For example, Pequod correctly implements queries like scan(tline|ann|100,

tline|bob|200) and scan(tline|a, tline|b) that cross multiple timelines. Correct and

minimal containing ranges are generated in each case. But evenwith containing ranges, the

algorithmmust compare the source range keyswith the relational overlay. As a schema-free

key-value store, Pequodmight have keys in the range that do not match the current source

overlay.

43

Output Range:
[tline|ann|100, tline|ann⁺)

⟨sub|ann|bob 7→ 1⟩
[sub|ann, sub|ann⁺)

[post|bob|100, post|bob⁺)
⟨post|bob|100 7→ Hi⟩
⟨post|bob|110 7→ Bye⟩

[post|ken|100, post|ken⁺)
⟨post|ken|100 7→ My cat is grumpy.⟩

⟨sub|ann|ken 7→ 1⟩

Containing Ranges Scanned:

Working Slot Set:
{user 7→ ann, time 7→ ∅, poster 7→ ∅}

{user 7→ ann, time 7→ ∅, poster 7→ bob}

{user 7→ ann, time 7→ 100, poster 7→ bob}
{user 7→ ann, time 7→ 110, poster 7→ bob}

{user 7→ ann, time 7→ ∅, poster 7→ ken}

{user 7→ ann, time 7→ 100, poster 7→ ken}

ComputedOutput:
⟨tline|ann|100|bob 7→ Hi⟩
⟨tline|ann|100|ken 7→ My cat is grumpy.⟩
⟨tline|ann|110|bob 7→ Bye⟩

emit

Figure 5.3: An example of forward execution of the Twip timeline cache join. As the algorithm
progresses through the containing ranges, the slot set is filled bymatching the scanned keys. Out-
put key-value pairs are emitted when the slot set is complete.

Figure 5.2 outlines the forward execution algorithm in pseudo-code. The steps that the

algorithm takes are described below and the contextual state (the slot set) at each step

are depicted in Figure 5.3. The algorithm begins by scanning the first source (ann’s sub-

scription list) using the containing range [sub|ann, sub|ann⁺). Keys from this range are

selected and the algorithm descends into a nested loop for each subscription. For each in-

vocation in the nested loop, the slot set is modified to reflect the definition of poster in

the subscription key. With this slot assigned, each nested loop selects posts from a single

poster by iterating over keys in the containing range [post|poster|100, post|poster⁺). As

each post is selected, the slot set is updated with the appropriate definition of time. Being

44

the primary source, as each key is selected the slot set is checked for completion and used

to emit an output key in the correct format. The value associated with each post is copied

as the output value, completing the key-value pair.

5.4 Partial, dynamic materialization

In conventional databases, materialized views are constructed in full; that is, the entire

output relation is generated and stored. In terms of Twip, this would be equivalent to ma-

terializing the timeline of every registered user for all time. Caching that amount of data is

not only technically challenging, it is not useful; a Twip user rarely requests archival data,

and not every user is actively checking his timeline.

Pequod is designed to support partial materialization. Like a view definition in SQL, a

cache join specification declares the entire output relation. However, resource constraints

necessitate that Pequod keep only a portion of the output keyspace resident in the cache at

any given time. But how are portions selected for materialization? As described in the for-

ward execution example above, portions of the output range are materialized dynamically

based on client requests. Pequod employs a simple strategy to guide dynamic materializa-

tion: output is generated on demand using the parameters of the client request and then

maintaineduntil it is evictedby the systemor removedby the client.Unlessotherwise spec-

ified (§5.6), all Pequod cache joins arematerialized partially and dynamically according to

this simple policy.

5.5 Incremental maintenance

Once generated, derived data ranges are kept consistent with their associated source

ranges with incremental maintenance operations. To support incremental maintenance,

45

Pequod establishes dependencies between output and source ranges in the cache. When a

source range ismodified, Pequod takes the appropriate action toupdate thederived ranges.

Pequod uses metadata, referred to as a join status range, to track the state of generated

output. A join status range describes the range bounds covered by the join execution and

tracks its validity (i.e., whether the range has expired or has been invalidated). If a request

arrives for a range that is partially covered by previously generated output (as determined

by querying the installed join status ranges), Pequodwill use forward execution only to fill

the gaps.

Tracking dependencies is relatively straightforward; metadata describing the generated

output (join status ranges) are linked with metadata (called updaters) associated with the

exact containing ranges used to produce the output. Updaters store update contexts, the

minimal set of information needed to perform an incremental update in response to a

source modification. Each context contains a slot set and links to a cache join specifica-

tion and join status range.When amodification to a source range occurs, the updaters that

overlapwith themodified range are invoked.When anupdater is invoked, it is passed infor-

mation about the change that occurred: the affected key, its old value, its new value (if any),

and the operation type (put or remove). Using the change information and the stored

contexts, the updater can update any previously generated outputs by inserting, remov-

ing, or updating key-value pairs. The exact updates performed are defined by the operator

attached to the modified source range in the cache join specification (e.g., copy, sum).

For example, if the request scan(tline|ann|100, tline|ann⁺) is used to fetch ann’s

Twip timeline, Pequod would install an updater that covers the source range for her sub-

scription list, [sub|ann, sub|ann⁺), and an updater for each post containing range that was

46

scanned (one for each user that ann follows). When bob inserts a new post

⟨post|bob|500 7→ My cat’s breath smells like cat food.⟩

Pequod should generate a new key for ann’s timeline:

⟨tline|ann|500|bob 7→ My cat’s breath smells like cat food.⟩

While processing the put operation for the new post, Pequod looks for installed updaters.

An updater with update context

join status range: [tline|ann|100, tline|ann⁺)
slot set: {user 7→ ann, time 7→ ∅, poster 7→ bob}
operator: copy

is located and invoked.With this update context, Pequodhas all the information it needs to

update the output.The join status range indicates that the output key is in the tline table,

the slot set identifies the user as ann and the poster as bob, and new post key provides the

time as 500. The copy operator is used to define the value of the output (by copying the

value of the input).

Figure 5.4 outlines a cache join execution algorithm that is updated to reflect:

− Partialmaterialization.Thevalidity of previously generated output is trackedwith

join status ranges. The cache join is only executed for subranges of the requested

output that are missing or invalid.

− Incrementalmaintenance.Pequod installs updaters into the source ranges used to

generate the output. Updaters are garbage collected when dependencies are broken

(e.g. by eviction or explicit removal of the source or output range).

− Nested joins.The output of one cache join can be used as the input to another. As

such, Pequod must check that all source ranges are valid before iterating over the

computed containing range. Nested joins are discussed further in §5.7.

47

compute_cache_join(first, last, join):1
for each subrange [x−, x+) ⊂ [first, last)where join status for [x−, x+) ̸= valid:2

js := new join status for [x−, x+)3
ss := join.slotset(x−, x+)4
process_sources(x−, x+, join, ss, js, 0)5
install js as valid6

7
process_sources(first, last, join, ss, js, srcidx):8

src := join.source(srcidx)9
[key−, key+) := ss.containingrange(src, first, last)10
srcjoin := look up join for [key−, key+)11
if srcjoin ̸= ∅:12

compute_cache_join(key−, key+, srcjoin)13
install updater with context {src, js, ss} into [key−, key+)14
for each ⟨key 7→ val⟩where key ∈ [key−, key+) and key matches src.overlay(ss):15

ss’ := ss.fillslots(key)16
if not join.isprimary(srcidx):17

process_sources(first, last, join, ss’, js, srcidx + 1)18
else:19

emit ⟨join.outputkey(ss’) 7→ src.operator(val)⟩20

Figure 5.4: Pseudo-code for the cache join execution algorithm, modified to query and install
metadata as necessary to support partial materialization, incremental maintenance, and chained
joins. Important updates to the algorithm in Figure 5.2 are shown in black.

Tracking dependencies with updaters allows Pequod to make incremental modifica-

tions to derived data. That is, the metadata determines what should be updated. But when

should theupdate takeplace?Bydefault, Pequoduses an eagermaintenancepolicy inwhich

updates are applied to derived ranges as soon as possible after the source range ismodified.

The eager policy optimizes read operations; maintenance tasks are subsumed by write op-

erations, so reads return fresh data without any additional effort. This strategy works well

for read-heavy workloads (like Twip and Newp), where the trade-off of diminished write

performance makes sense.

48

However, there are some cases for which eager maintenance is not desirable, even in

cachable workloads like Twip. For example, how should a timeline be updated to reflect a

new subscription? Under the eager policy, Pequod would back-populate the subscriber’s

cached timeline with the posts of the user named in the new subscription. As a result, any

request that falls within the generated output range would return up-to-date results that

reflect the new subscription. But what if historical timeline requests are infrequent? Under

the assumption that the vast majority of timeline requests are used for refreshing (fetch-

ing posts since the last check), back-populating cached timelines to reflect subscription

changes is unnecessary and wasteful.

As a result, Pequod also employs a lazy update policy for some updates. Under this

policy, a source modification will not generate an immediate update to derived output.

Rather, the output ranges aremarked to indicate that an update is pending and the context

of the modification is recorded. The update is then lazily applied to the output range ac-

cording to the scope of subsequent requests. For example, consider the lazy update strat-

egy as applied to Twip subscription changes. If user ann has a cached timeline that cov-

ers the range [tline|ann|100, tline|ann⁺) and she adds a new subscription to bob, Pe-

quod will attach the context of the update (the key-value pair inserted) to her join sta-

tus range. If she then checks her timeline at time 5000, the update is applied only for the

range [tline|ann|5000, tline|ann⁺); the update context remains in place for the range

[tline|ann|100, tline|ann|5000) and will be applied if queried.

The eager and lazy maintenance policies used by Pequod have competing performance

goals and costs. The eager approach optimizes for speed of read operations at the expense

of slower writes and potentially wasted space (to store derived data that are never read).

The lazy approach saves space and reduces computation on writes, but complicates reads

49

with partial updates. Application developers can consider this trade-off and choose poli-

cies to suit the needs of the application. The next section describes how a developer can

influence the behavior of cache join execution and maintenance by manipulating the join

specification.

5.6 Tuning

In Pequod, the cache join specification defines what data is produced in a computation

and how the join is executed and maintained. In addition to the inputs, output, and op-

erator, a developer can provide performance annotations that change the behavior of the

execution algorithm. In this section we describe how developers can change the perfor-

mance characteristics of Pequod through careful cache join construction and annotation.

Selectivity

The first opportunity for optimization comes from the design of the relational overlays

for the data ranges used as inputs to a cache join. The overlay not only defines the slot

decompositionof a key, but theorder of the slotswithin the key. Since key-valuepairs inPe-

quod are stored and accessed according to a canonical (lexicographic) order, a thoughtful

developer can maximize performance by adjusting slot order.

It is important to reduce the scope of each source range scan during cache join execu-

tion. The exact ranges scanned are determined by the containing ranges computed from

the working context (the slot set and original request). To narrow the scope of a scan, the

developer should order the slots in a relational overlay such that the filled slots appear first.

Consider the two Twip timeline cache join specifications depicted in Figure 5.5. Both

joins produce output in the same format, but differ in their use of base data; subscription

50

(a)

tline|user|time|poster =

check sub|user|poster
copy post|poster|time

scan(sub|ann, sub|ann⁺)
scan(post|bob|100, post|bob⁺)
scan(post|ken|100, post|ken⁺)

(b)

tline|user|time|poster =

check follow|poster|user
copy post|poster|time

scan(follow, follow⁺)
scan(post|bob|100, post|bob⁺)
scan(post|ken|100, post|ken⁺)

Figure 5.5:Two versions of the Twip timeline cache join and the resulting source range scans is-
sued during join execution. Version (a) is more selective, with the scope of its first scan narrowed
to a single user. Version (b) requires a full table scan because the poster slot is unassigned when
the scan is issued.

lists are used to express relationships between users in (a), whereas (b) uses follower lists.

Aside from the key prefix, the only difference between these two ranges is the order of the

slots in their relational overlays. Subscription lists are ordered by subscriber, and follower

lists by subscribee. However, the cost to execute these joins is quite different. Below the

join specifications in Figure 5.5 are the containing ranges that Pequod scans to produce

output for user ann’s timeline check (5.4). The only difference is in the scope of the first

scan (the one used to identify ann’s subscriptions). In (a), the scope is restricted to a rela-

tively small subrange of the sub table. But in (b), the entire follower table is scanned; the

few follower|poster|ann keys are discovered at an enormous cost. For context, if annwere

a typical Twitter user, the subscription list scan in (a) would evaluate hundreds of keys. In

contrast, the follower list scan in (b) would evaluate billions of keys (every relationship in

the social graph) [27].

This example demonstrates how slot arrangement in a source range’s relational overlay

can affect the selectivityof range scans: that is, thenumberof key-valuepairs evaluatedwhile

scanning.We use an extreme case, that of an unassigned slot preceding an assigned slot, to

51

accentuate the effect. The developer should not only take care to avoid this arrangement,

he should consider the relative selectivity of assigned slots and arrange them to optimize

scan performance, if possible.

In addition to optimizing for selectivity within source overlays, the developer should

also consider selectivitywhen determining the order inwhich source ranges are processed.

Scanning the smallest ranges first minimizes the total number of pairwise key-value com-

parisons required to execute the cache join. This is a well known strategy for set intersec-

tion and is used in relational database query optimizers. Some database query optimizers

use estimates of selectivity, based on table statistics, to reorder operations within a query

at execution time. Pequod does not have an online query optimizer; the system executes a

join according to its specification (which is statically defined).Thus,when joiningmultiple

sources, a developer canorder those sources in ameaningfulway using domain knowledge.

We illustrate this point with an example from Twip. Celebrities that join Twip are put

into the difficult position of wanting to connect with fans by following them but not want-

ing to be inundated with their mundane tweets. Thus, the Twip developer might want to

implement a special feature for celebrity users: an exclusive, celebrity only timeline that is

free of plebeian content. He might implement it with a new join

exclusive_tline|user|time|poster =
check celeb|poster
check sub|user|poster
copy post|poster|time;

(5.6)

that generates the exclusive timeline. This join augments the original timeline join with

another source (a list of celebrities). To optimize the join execution, the developer would

want to put the most selective sources first. A scan of the sub range will likely yield thou-

sands of key-value pairs for a celebrity user, but there are likely only hundreds of celebrities

52

in the service. It would be better to push the celeb scan to the beginning of the join so that

fewer sub keys match and, in turn, fewer post ranges are scanned. It is not guaranteed that

the earlier sources will be more selective when queried, but it is often possible to make

assumptions about the relative selectivity of sources using domain knowledge.

Performance annotations

Pequodoffers several performance annotations in the join specification grammar.Main-

tenance annotationsdetermine howa cache join’s outputwill bemaintainedbyPequod after

it is computed. A single maintenance annotation is allowed in each cache join. There are

three options:

− push.A push annotation signifies that the cache join outputwill bemaintainedwith

incremental updates by Pequod until it is removed from the system (e.g., by evic-

tion). Push joins are the functional equivalent of materialized views in a relational

database. This is the default maintenance behavior for cache joins, and is applied in

the absence of an overriding annotation.

− pull. The pull annotation disables join maintenance. Output is generated on de-

mand and is valid for a single response. Pull joins are the functional equivalent of

queries and non-materialized views in a relational database. Due to the high cost

of generating output anew for each query, pull joins should be used sparingly. In a

typical caching scenario where data is requested multiple times, push (view main-

tenance) typically has lower computation costs than pull. We thus expect most Pe-

quod cache joins to use push. Pull joins can be useful, however, if a developer knows

that data is unlikely to be re-requested, so the computation and space required for

continued maintenance would be wasted.

53

− snapshot.A cache join annotated with snapshot behaves like pull join with the ex-

ception that generated output is valid for more than one response. Specifically, the

output is valid for a finite amount of time, after which it expires and will need to

be regenerated. Snapshot joins allow the cache to serve data with a bounded stale-

ness. They can be used as an alternative to (unnecessary) incremental maintenance

for data that do not have strict freshness requirements—for example, the listing of

articles on the front page of Newp.

A second type of annotation allows a developer to choose the incremental update policy

that is applied to the join’s sources. This annotation is meaningful only for push joins, as

pull and snapshot joins do not require maintenance after execution. The two annotation

options are lazy and eager, corresponding to the two update policies outlined in §5.5.

When Pequod processes a command that could trigger an incremental update (put or re-

move), the relevant updaters are located in the range metadata. For eager push joins, Pe-

quod invokes the updaters immediately, potentially modifying the output range. For lazy

push joins, Pequod forgoes updater invocation and instead logs the key-value pair that trig-

gered the update. The logged update is applied when the client queries the output range.

A lazily updated push join is a bit of a contradiction. Push joins exist to optimize query

latency by pre-computing outputs. Logging updates and applying them at query time par-

tially negates this optimization. Pequod provides the lazy annotation as a storage opti-

mization; the application can potentially save space—for example, by avoiding excessive

backfillingof auser’s timeline after a subscriptionchange(§5.5)—but acceptshigherquery

latencies in trade. As such, only secondary sourcesmay bemarkedwith the lazy and eager

annotations. Primary sources are always updated eagerly. No space savings are possible

when the lazy update policy is applied to the primary source. Each key-value pair that trig-

54

gers a potential update must be logged into each updater for future application. This re-

quires, to first order, the same amount of space as generating the output eagerly.

We describe one final annotation that allows a developer to influence the order inwhich

sources are processed. In general, Pequod processes the secondary sources in specification

order before processing the primary source and executing the operator. The filter annota-

tion, which can be applied to any secondary source, indicates that the source should be

processed as late in the join execution as possible. For example, consider an alternate form

of the Twip timeline cache join

tline|user|time|poster =
check filter sub|user|poster
pull copy allposts|time|poster;

(5.7)

that uses a global list of all tweets, allposts, rather than the individual user post ranges.

Normally, the sub containing range would be scanned first, and for each key enumerated

by the scan, the allposts range would be scanned (having defined the poster) slot. How-

ever, the allposts overlay is not optimized for this type of scan.The slot time is listed first,

making these scans extremely inefficient.

It is more efficient to first perform a single scan of allposts and then select only the

posts that are relevant to the user by checking for a sub key that matches the poster slot of

each enumerated key.The check is still applied before emitting output keys with copy, but

the order of the containing range scans is altered to bestmatch the relational overlay. Using

this cache join for normal Twip operation would be a disaster: the allposts range would

contain thousands of tweets per second, and the majority of the checks performed on the

sub range (each requiring its own tree lookup) would not yield any results. However, this

strategy is useful when the initial scan produces few (or zero) results. This is the case for a

Twip optimization that deals with celebrity users, presented in §5.7.

55

5.7 Composition

Pequod allows developers to compose cache joins to create compound in-cache compu-

tations. In this section we explore two techniques for composing joins, chaining and inter-

leaving, that developers can employ tohandlemore complex transformations andoptimize

application performance.

Chaining

One benefit of using data ranges in the cache join specification is that the joins are ag-

nostic to the provenance of the key-value pairs they process. At the level of the cache join

abstraction, it makes no difference if a source range consists of data provided by the appli-

cation client or computed by another cache join.Thus, cache joins can be chained together,

with the output of one join used as the input to another.

Consider an example from Newp: if the developer wants to display a list of users with

karma scores over a certain threshold, she could add a chained join that uses the computed

karma as a source. The elite join

// compute karma from votes, same as above
karma|author = count vote|author|seq|voter;

// use computed karma to produce a list of elite users
elite|author = copy lbound 100000 karma|author;

(5.8)

creates a data range that identifies this subset of users with karma scores greater than or

equal to 100,000. This join filters the output of the karma cache join (by applying a lower

bound to the copied results) and arranges it for quick retrieval with a single scan(elite,

elite⁺) request.

No special syntax is required to chain joins; the developer simply uses the same data

range in the specification of two joins (as the output of one join and the input to another).

56

During join execution, Pequod will check if the current join’s inputs are produced by an-

other join. If so, it will ensure that the input range is valid, executing the associated join

if necessary.² In this way, Pequod will work backward to ensure that the correct output is

generated at the end of the chain. Pequod will also work forward to ensure that changes to

the base data at the beginning of the chain are propagated throughout.

Pequod does not limit the length of a cache join chain. However, developers need to

be mindful of the implications of chaining. Changes to base data will propagate through

the chain, causing cascading invalidations and updates that affect write performance. Ad-

ditionally, developers need to be aware of performance annotations that are defined in pre-

decessor links. For example, adding a pullor snapshot annotation to the karma cache join

will affect how the elite range is created and maintained.

Interleaving

Pequod allows developers to interleave cache joins, with the output of many joins pro-

ducing keys in the same range. Interleaved cache joins can be categorized into two groups:

split joins produce key-value pairs that are semantically indistinguishable, and mixed joins

produce key-value pairs that are semantically different. For example, the cache joins

allimg|name|size|date = copy albumpic|album|name|date|size

allimg|name|size|date = copy attachment|jpg|date|size|name
(5.9)

split the production of allimg key-value pairs between two joins, each handling image data

fromdifferent parts of an application.The result is a single range, populatedwith identically

²It is an error to install a cache join chain that contains a cycle.Though the prototype implementation
does not presently check for this condition, it could be implementedwith a straightforward graph analysis.

57

formatted key-value pairs. In contrast, the joins

sample|time|old|x|y = copy reading|user|time|x|y

sample|time|new|x|y|loc = copy sensor|user|time|loc|x|y
(5.10)

mix semantically different keys into a single range (sample). In this case, the developer can

scan the cache for a range of times and retrieve sample points in two formats (perhaps

from different versions of the same application).

When might a developer choose to split a single cache join into multiple joins with the

same output format? Consider the Twip timeline cache join (5.3): on average, new tweets

will be propagated to hundreds of users [6]. However, what happens when a celebrity

tweets?That post could be delivered tomillions of followers. Executing the updates tomil-

lionsof timelines is not necessarily prohibitively expensive, especially if updates are applied

asynchronously and in parallel (§6.3). But storing the same tweet inmillions of timelines is

a resource drain—even if the value is shared by all key-value pairs, millions of unique keys

must be stored. In addition, storing all of these key-value pairsmakes reads slower. Pequod

is an ordered store, so the complexity of a lookup is O(log n), where n is the number of

key-value pairs. Thus, there is a potential problem when every celebrity tweet grows n by

millions of entries.

To address this problem, the developer can split the timeline computation by installing

multiple cache joins that produce output in the same range. This solution exploits the di-

chotomy that exists in the user base by handling celebrity tweets in a different way: the

tweets of regular users are pushed to their followers’ timelineswhile those of celebrities are

merged in when a timeline is queried. The updated set of joins illustrates how this works:

58

// non-celebrity, same as above
tline|user|time|poster =

check sub|user|poster
copy post|poster|time;

// celebrity
tline|user|time|poster =

check filter sub|user|poster
pull copy ctline|time|poster;

ctline|time|poster = copy cpost|poster|time;

(5.11)

The biggest difference between these joins is the maintenance policy: the non-celebrity

join is materialized into the store and kept fresh (push) while the celebrity join is executed

on demand (pull). When a user queries his timeline, both joins are executed before any

output is returned. On average, the bulk of the response is pre-generated by the push join

and is ready for reading. The pull join will be executed on each query, but it is expected to

finish quickly because there are relatively few celebrities. Thus, the developer has traded

slightly slower timeline queries for a reduction in store size.

There are a few things to note about the handling of celebrity data. First, celebrity tweets

are stored in a special cpost range so that they are not copied into a user’s timeline when

the push join is executed. Second, a special ctline range holds all of the celebrity tweets,

sorted by time.This rearrangement exists so that the pull join can be optimized. Since there

are relatively few celebrities and timeline queries cover a small time interval, this global

celebrity tweet range is scanned first and then filtered by the user’s subscriptions. In most

cases, scanning the ctline containing range will return few results, if any. This minimizes

the number of lookups in the sub range, often eliminating them entirely.

Pequod is not the only system capable of combining execution strategies to produce re-

sults. A similar timeline construction can be implemented in SQL by requesting the UNION

of a materialized view that holds the pre-computed non-celebrity portion and an on de-

59

mand query that generates celebrity portion. In addition, Silberstein et al. [38] suggest a

push-pull strategy for optimizing feed-based applications. Their online algorithm makes

this decision individually for every user in the system based on observed usage patterns.

At query time, the feed for a user is constructed by combining materialized and freshly

generated content.

Mixing is best demonstrated with an example from Newp. To read a Newp article, a

clientmust fetch (1) the article itself, (2) the article’s vote count, (3) all comments on that

article, and (4) the user karma for the author of each such comment. This might involve

many commands; for example, to fetch article bob|01:

(1) get(article|bob|01)
(2) get(vcount|bob|01)
(3) scan(comment|bob|01, comment|bob|01⁺)
(4) for each returned comment, get(karma|<commenter>)

Although the first three commands can proceed in parallel, the last requires commenter

IDs known only after step (3). By mixing joins, this interaction can be reduced to a single

command. The revised Newp cache joins

// vote count and karma, same as above
vcount|aid = count vote|aid|voter;
karma|author = count vote|author|seq|voter;

// mixed joins
page|aid|a = copy article|aid;
page|aid|v = copy vcount|aid;
page|aid|c|cid|commenter = copy comment|aid|cid|commenter;
page|aid|k|commenter =

check comment|aid|cid|commenter
copy karma|commenter;

(5.12)

allow the application to fetch the article from Pequod in its entirety with the command

scan(page|bob|01, page|bob|01⁺)

request. The results are grouped with the same common prefix, page|bob|01, but have

60

different relational overlays beyond that prefix and different value types. For example, with

cache contents

⟨article|bob|01 7→ http://xkcd.com/327/⟩

⟨comment|bob|01|100|bob 7→ This is the best site.⟩
⟨comment|bob|01|103|ken 7→ LOL⟩
⟨comment|bob|01|305|ken 7→ I like cats.⟩

⟨vcount|bob|01 7→ 3⟩

⟨karma|bob 7→ 4⟩
⟨karma|ken 7→ 0⟩

the mixed page joins will produce the output

⟨page|bob|01|a 7→ http://xkcd.com/327/⟩
⟨page|bob|01|c|100|bob 7→ This is the best site.⟩
⟨page|bob|01|c|103|ken 7→ LOL⟩
⟨page|bob|01|c|305|ken 7→ I like cats.⟩
⟨page|bob|01|k|bob 7→ 4⟩
⟨page|bob|01|k|ken 7→ 0⟩
⟨page|bob|01|v 7→ 3⟩

Each key-value pair in the response is essentially a tagged union that can be parsed into

component data by the application using the delimiters that appear in the keys (a, c, k, v).

Themixed joins are relatively simple, a straightforwardapplicationof chaining andcopy-

ing. Of course, this type of composition trades space for improved performance. In this

case the trade-off is warranted; a typical article has hundreds of comments butmay be read

hundreds of thousands of times (especially if it is linked on the site’s front page).

This feature of cache joins has no direct analog in relational databasematerialized views.

The relational model requires that each row in a table consist of the same set of columns.

Pequod is flexible in that it can apply a schema (in the form of a relational overlay) when

needed to perform a computation, while supporting schema-free queries. This feature is

not unique to Pequod; in theory, other systems with schema-free data models, such as

61

those based on column families, could produce mixed output. However, Pequod requires

that the columns in each tuple appear in a fixed order (defined by the relational overlay).

5.8 Discussion and limitations

In this section we discuss the limitations of our design choices and highlight the merits

of alternative designs.

Ambiguous joins

Pequod trusts the developer to install error-free joins that are meaningful to the appli-

cation. There are joins that are technically correct (they can be executed by Pequod) but

produce incorrect or ambiguous results. For example, the Twip timeline cache join variant

tline|user|time =
check sub|user|poster
copy post|poster|time

(5.13)

lacks the poster slot in the output overlay.This join produces undefined results when there

are twoormoreposters that tweet at the same time.Acorrespondingdatabasequerywould

produce one tuple per relevant tweet. But Pequod values are strings, not tuples, and the

copy operator is not capable of combining multiple values into a single string.

It is not necessarily appropriate to reject such joins out of hand; perhaps the application

ensures that the time slot is unique. Thus, Pequod’s users are left responsible for avoiding

ambiguous cache joins, either by preventing output collisions or by creating operatorswith

well-defined behavior. Of course, there is also room for improvement in Pequod; perhaps

the system could could provide debugging annotations that guide the runtime behavior of

the system, producing an error when a conflict occurs.

62

Enhanced overlays

The cache join grammar in Figure 5.1 is sufficiently expressive for the purposes of Twip

and Newp, but some computations are difficult or impossible to define. One limitation is

that values are not used as first-class entities in join specifications; for example, a value can-

not be named and used as a slot in an output key, nor can an output value be constructed

fromslotdefinitions.We illustrate theseuse cases andexplorepossible grammarextensions

with two quick examples from Newp.

First, consider an update to the elite karma join (5.8). If the developer wants to main-

tain a sorted list of elite users, he could install a slightly modified join

elite|kval|author =
copy lbound 100000 karma|author as kval; (5.14)

that uses the value of each scanned key-value pair, labeled kval, to fill a slot in the output

keys.

Next, consider a developer who wants to keep track of the user with the highest karma.

The karma range is not sorted according to karma score, so it would be necessary to scan

the entire range to find the highest score. Instead, he might install a cache join

maxkarma : author|maxval =
max karma|author as maxval; (5.15)

in which the output of the operator is explicitly named, maxval, and is used to construct a

compound value for the output key. With this syntax there is always a single, well-defined

key-value pair associatedwith this computation.However, this computation is ambiguous;

the value of maxkarma is undefined if two or more users have the same karma score. In

our prototype implementation, the value is overwritten with the latest computed value or

update.

63

Naturally, if we allow the developer to name values as a whole and construct compound

values as output, we should also extend the relational overlay to input values. For example,

if the max karma join were used in a chain, the chained join would likely need to interpret

the compound value produced in the previous step.

Operators

Pequod should be made extensible with support for user-defined operators; currently,

only a handful of built-in operators are available. For example, users could add operators

that apply a mathematical function to, categorize, filter, or sample cache data. However,

there are some restrictions on operator functionality imposed by Pequod:

1. Operatorsmake local decisions; they are passed a single key-value input pair and the

existing key-value output pair (if it exists) and are expected to produce an output

based on this information alone.

2. Operators are stateless; they may be invoked as part of a forward execution or in

an incremental update. No state information can be stored or retrieved when the

operator is invoked.

3. Operators are deterministic; built-in operators make no random decisions, though

this is not strictly forbidden.

With user-defined operators and joins composed as an acyclic graph, Pequod begins to

resemble streaming query [12] and dataflowbatch processing systems [24].While similar,

these tools are designed for different purposes; streaming queries transform live streams of

information in a producer-consumer setting and batch processing systems are designed to

process data in phases.

64

View selection

In Pequod, the view selection problem, determiningwhich ranges should bematerialized

to improve performance, is solved by a combination of human input and runtime policies.

The developer installs cache joins to define the superset of materialized ranges. However,

as a cache with limited space, Pequod will dynamically materialize only a portion of the

installed joins’ output range. Pequod use a policy to determine which portions of the full

view should be materialized and kept fresh (for speedier retrieval) and which should be

generated on demand (to save space).

The default policy—which materializes portions as they are requested and keeps them

fresh as space allows—treats all requests equally and assumes there will be enough space

after eviction to store the output.This policy is simple, but it could lead to excessive churn

when the cache is operating at capacity.There are, of course other policies; the cache could

materialize and maintain the most frequently requested ranges. Or, perhaps there is an

application-specific policy that could be communicated to Pequod. For now, the simple

policy works well enough to leave such extensions as future work.

65

6
Distribution

Pequod operates as a distributed system, with many cache nodes cooperating to perform

cache functions. In this chapter we extend the cache join abstraction to function in the

context of a distributed system. Of particular importance are: how data ranges are stored

across many cache nodes and accessed by clients, how cache joins are executed in this dis-

tributed setting, how derived data are kept fresh, how data are kept consistent across the

system, and how additional resources are used to scale the system.

6.1 Partitioning

Pequod is designed to handle datasets that are larger than the available memory of any

single machine. Pequod pools the available memory of many machines and manages their

resources on behalf of the application. The interface presented to clients is that of a single

store, concealing the actual location of key-value pairs.

A traditional key-value cache, which presents a hash table abstraction, will scale with

ease; there is no requirement for sequential range scans, so the cache need only support

random access. The key-value pairs are independent of one another and can be stored on

any node. However, Pequod is an ordered store, so the key-value pairs must be logically

grouped.That is, an application should be able to request all keys in a specified range with-

out contacting too many machines in the cluster.

66

A distributed application-level cache uses a partitioning scheme to store and retrieve

key-value pairs across many cache nodes. A good partitioning both provides a well-known

location for each pair and spreads the system load across all available cache nodes. A well-

known location is critical for reducing the overhead of cache operations; targeted commu-

nication avoids flooding cache nodes with superfluous requests. Load balancing improves

system performance by minimizing hot-spots and by raising the effective working set size.

Thepartitioning scheme inPequodneeds to support sequential scans of arbitrarily sized

ranges. As such, partitioning in Pequod is accomplished by segmenting: breaking a sin-

gle range into multiple smaller ranges and storing each on a different cache node. Data

segmenting is transparent to the application client; Pequod handles requests that cross

segment boundaries internally, merging segments and providing a single response to the

client. But Pequod is not capable of creating the partitioning itself, at least not a very effi-

cient one.The developer, with knowledge of application access patterns, must provide this

mapping (or an algorithm that can produce one). Fortunately, relational overlays can be

used to make this task easier. Rather than considering the whole key as a unit, a Pequod

partitioning scheme can operate on one or more slots in a key’s overlay. For example, the

Twip developer can exploit the user identifier that is embedded in each sub and post key

to evenly distribute users across nodes.

While conceptually simple, an efficient partitioning function may be deceptively diffi-

cult to construct. Consider a Twip partitioner that segments base data by user identifier,

as above. The function provided by the developer needs to produce a partitioning of the

sub and post keyspaces. The function can interpret the user identifier slot of the keys as a

numerical value and evenly distribute keys across cache nodes. Perhaps the users are par-

67

titioned in a round-robin fashion—for example, 10 users across 3 nodes as:

Cache Node 1
[post|001, post|001⁺)
[post|004, post|004⁺)
[post|007, post|007⁺)
[post|010, post|010⁺)

[sub|001, sub|001⁺)
[sub|004, sub|004⁺)
[sub|007, sub|007⁺)
[sub|010, sub|010⁺)

Cache Node 2
[post|002, post|002⁺)
[post|005, post|005⁺)
[post|008, post|008⁺)

[sub|002, sub|002⁺)
[sub|005, sub|005⁺)
[sub|008, sub|008⁺)

Cache Node 3
[post|003, post|003⁺)
[post|006, post|006⁺)
[post|009, post|009⁺)

[sub|003, sub|003⁺)
[sub|006, sub|006⁺)
[sub|009, sub|009⁺)

This approach easily handles the casewhere user identifiers are generated sequentially, and

offers quick lookup for a single user’s data. However, it does not efficiently support scan-

ning across user boundaries—for example, if the application wanted to collect the posts

of its oldest users. The system can enumerate all the cache operations needed to piece to-

gether this scan, but it will require many small scan requests to every cache node. An alter-

native is to divide the identifier space by the number of cache nodes and store a range of

users on each, as in:

Cache Node 1
[post|001, post|004⁺)
[sub|001, sub|004⁺)

Cache Node 2
[post|005, post|007⁺)
[sub|005, sub|007⁺)

Cache Node 3
[post|008, post|010⁺)
[sub|008, sub|010⁺)

Thismakes cross-user queries more efficient, but some considerationmust be given to the

method of assigning (or correcting) user identifiers so that system load is balanced across

cache nodes. In either case, it is the responsibility of the developer to consider these trade-

offs in the context of the application’s workload.

Data ranges that are not explicitly mapped by the partitioning function can still be re-

quested by an application client. For example, the tline table is not mapped in either par-

titioning above. If there is a cache join that covers the unmapped range, it will be executed

to fill the range. In this way, a cache join can be executed on any cache node. Alternatively,

68

if the tline range is explicitly partitioned, requests will be routed to the appropriate cache

node. Requests for unmapped data ranges that do not correspond to cache join outputs

return the empty set.

In summary, Pequod relies on an application-defined partitioning function to provide

a deterministic mapping of keys to cache nodes. In addition to individual key lookup, this

function must enumerate the segment-node pairs that cover a range-based lookup in the

keyspace. This mapping is known to all cache nodes and to the application clients.

6.2 Subscriptions

All data ranges that are mapped by the partitioning function have a designated home

node that stores the authoritative version of a cache entry andmakes it accessible to clients

and other cache nodes. Cache entries can be copied from the home node to other cache

nodes in a distributed deployment.

Fetching remote ranges and maintaining their freshness is handled in Pequod with sub-

scriptions. A subscriptionestablishes a couplingbetween twocachenodes: a requesternode

specifies a range of data to be transferred, and the home node for the requested range com-

plies. In addition, the home node promises to inform the requester of any updates that

occur to the subscribed range. The updates continue until the requester explicitly termi-

nates the subscription or the range is evicted from the home node. Cache nodes establish

subscriptions using a set of inter-node commands. A summary of the commands:

− subscribe(first, last). Establishes a subscription for the range [first, last).All exist-

ing cache entries are returned and the subscription is recorded in the home server.

− unsubscribe(first, last).Cancels anexisting subscription for the range [first, last).

The home node removes its record of the subscription and stops sending updates.

69

− modify(key, val, op). Informs the subscriber of a modification to a subscribed

range. The key argument identifies the modified entry while op indicates the type

of modification (insert, delete, or update).

− invalidate(first, last). Informs the subscriber that the subscribed range [first, last)

has been invalidatedor evicted at the homenode.As a result, the subscription is bro-

ken, and the subscriber must remove its record. The subscriber can establish a new

subscription if the data are required to handle future requests.

It is important that the subscriber and home node agree on the set of active subscrip-

tions; otherwise cache nodes may produce incorrect join output or serve stale data. For

example, if a cache node C has a record of a subscription that covers a remote range that is

needed to compute a cache join, it will not send another subscription to the home nodeH.

Node C assumes by the presence of a subscription record that the data are already up-to-

date. If, however, the home nodeH did not hold a corresponding subscription, the copied

range in C may be stale with respect to H (because H had not been sending modify com-

mands for that range). Assuming a correct implementation of the subscription command

set, this property can be maintained if there is a single, ordered, reliable communication

channel between eachpair of cache nodes. If each cachenodeprocessesmessages from this

channel in order (mixing incoming requests with responses to outgoing requests) then

there can be no erroneously held subscriptions. This is not to say that the state of these

subscriptions or the corresponding data ranges are exactly synced between cache nodes at

all times; there could be messages in flight that must be processed before the subscription

state agrees. However, if the system were allowed to quiesce, the subscription state would

eventually converge. Consistency is further discussed in §6.6.

Pequod supports proxied requests; for example, if a client sends a request for a data

70

range to cache nodeC but the home node for the range is actually nodeH. Rather than re-

turning an error, C makes a request to H for the data and returns the results to the waiting

client. In addition, C caches a copy of the range in its own store so that it can be used to

serve future requests without contacting the home server. Proxy requests offer the devel-

oper some flexibility in routing cache operations. For example, the client could avoid the

home node intentionally; if many nodes proxy and cache popular data—like the tweets of

a celebrity—then the load of serving this data can be effectively balanced. In an another

example, a client may submit a request for a data range that is partitioned across many

nodes.The primary node (the one communicating with the client) is responsible for split-

ting the request into multiple parts using the partitioning function, requesting data from

other nodes, and constructing a single response to the client.

6.3 Cache join execution

Executing cache joins in a distributed deployment is relatively straightforward; a join

is executed on a single machine and the subscription mechanism is used to ensure its in-

puts are cache resident. Figure 6.1depicts the inter-node communicationpatterns typically

used in Twip.When the client issues a timeline check for user ann (1), Pequod invokes the

cache join (2), fetches the non-resident data from a peer node (3), caches it locally, and in-

stallsmetadata to handle future operations (4).Once the data are local, the cache join con-

tinues, producing results for the client. Subsequently, when user ken makes a new post at

time 500, handled at ken’s homenode (5), Pequod forwards the information to subscribed

nodes to keep their subscriptions up-to-date (6). This modification invokes the installed

updater for ann’s timeline (7), ensuring that her timeline is fresh for the next check.

71

Timeline Check:

Application
Client

Cache
Node 2

Cache Node 1
scan(tline|ann|100,

tline|ann⁺)

install updater
install subscription

(4)
(1)

(3)

subscribe(post|ken|100,
post|ken⁺)

invoke cache join
(2)

NewPost:

Application
Client

Cache
Node 2

put(post|ken|500, YOLO)(5)

Cache Node 1

invoke updater
(7)

(6)

modify(post|ken|500,
YOLO, insert)

complete cache join

Figure 6.1:ATwip timeline check (1) is executed in a distributed Pequod deployment (2). Re-
motedata needed to support the cache join are fetched and cached (3), andmetadata are installed
to handle future updates (4). A subsequent post (5) is forwarded to the subscribed node (6) to
keep the derived data fresh (7).

Figure 6.2 highlights the changes to the cache join execution algorithm. Prior to scan-

ning a source containing range, Pequod consults the partitioning function to determine if

the range is mapped to one or more remote cache nodes. If the range is entirely local, the

algorithm proceeds as before. Otherwise, the subscription records are queried to deter-

mine if a copy of each required remote range is already present. If not, a new subscription

is made by communicating with the appropriate home node. Execution is blocked while

the subscription is established.¹ When the response to the subscription is received, a new

subscription record is installed and the algorithm can continue.

¹The prototype implementation minimizes the time spent in a blocked state by making as many sub-
scriptions as possible in parallel during each phase of the join execution.

72

process_sources(first, last, join, ss, js, srcidx):1
src := join.source(srcidx)2
[key−, key+) := ss.containingrange(src, first, last)3
remotes := look up remote partitions of [key−, key+)4
for each ⟨remrange 7→ node⟩ ∈ remotes:5

sub := look up subscription record for remrange6
if sub= ∅:7

subscribe(remrange, node) // blocks8
install subscription record for remrange9

srcjoin := look up join for [key−, key+)10
if srcjoin ̸= ∅:11

compute_cache_join(key−, key+, srcjoin)12
install updater with context {src, js, ss} into [key−, key+)13
for each ⟨key 7→ val⟩where key ∈ [key−, key+) and key matches src.overlay(ss):14

ss’ := ss.fillslots(key)15
if not join.isprimary(srcidx):16

process_sources(first, last, join, ss’, js, srcidx + 1)17
else:18

emit ⟨join.outputkey(ss’) 7→ src.operator(val)⟩19

Figure 6.2: Pseudo-code for the cache join execution algorithm, modified to fetch remote data
ranges as necessary prior to scanning source containing ranges. Important updates to the algo-
rithm in Figure 5.4 are shown in black. The (unchanged) code for compute_cache_join is
omitted.

Up to this point we have made no mention of concurrency with respect to the cache

join execution algorithm; for simplicity of explanation we assumed a single threaded, sin-

gle node deployment. We now assume that Pequod is implemented to allow concurrent

operations at each node and is deployed across many nodes. This prompts the question:

what is the expected output of a cache join that executes concurrently with other cache

operations?

73

Client Cache
Node 1

Cache
Node 2

scan(tline|ann|100, tline|ann⁺)

put(post|bob|200, LOL)

subscribe(post|ken|100, post|ken⁺)

scan(sub|ann, sub|ann⁺)
scan(post|bob|100, post|bob⁺)

scan(post|ken|100, post|ken⁺)

scan(tline|ann|100, tline|ann⁺)

insert ⟨tline|ann|100|bob 7→ Hi⟩
⟨tline|ann|110|bob 7→ Bye⟩

insert

insert ⟨tline|ann|100|ken 7→

⟨tline|ann|200|bob 7→ LOL⟩

My cat is grumpy.⟩

invoke updaters

(1)

(2)

(4)

(3)

Figure 6.3: An example of concurrent cache operations. A cache join execution is blocked by a
subscription request and a new insertion to an already scanned input causes a concurrent update.
The response to the client reflects this update.

Consider an example execution, depicted in Figure 6.3, of the Twip timeline join in a

two-node deployment. The client issues a scan for user ann’s timeline and Pequod scans

sub|ann to fetch her subscription list.This range is local toC . Next, the tweets of user bob,

also cache resident, are scanned and sometline|annkey-valuepairs are emitted (1).How-

ever, the tweets of user ken are notmapped toC and are not cache resident. A subscription

request is sent toC for the data and the join execution is blocked (2). In themeantime,C

handles the insertion of a new tweet from bob, which emits another tline|ann key thanks

to the previously installed updater (3). Eventually, the subscription request is fulfilled and

the join execution continues (4). User ken’s posts are used to emit the final tline|ann key.

74

For this example, the response to the client will include bob’s post at time 200. When

the cache join algorithm emits a key-value pair, it is inserted directly into the store. Like-

wise, when the concurrent put is processed, the installed updater inserts the new output

into the store. To gather a response for the client, the requested range, [tline|ann|100,

tline|ann⁺), is scanned after all the sources are processed.Thus, the response to the client

will represent the cache join as computed over an inconsistent, node-local view of the

source data, which may include modifications to the source ranges that occurred after the

start of the join execution.

6.4 Scaling

A distributed application-level cache is scalable if the addition of resources to the sys-

tem has a positive effect on performance. Under this definition, if the cache is operating

at capacity, adding more cache nodes should improve overall performance by spreading

the cache load over more servers. Likewise, if the application experiences an increasing

workload—for example, a steady influx of new users—a developer can add more cache

nodes to offset this growth and maintain a performance target.

Like other key-value application-level caches, adding more cache nodes to Pequod will

increase the storage capacity of a deployment. But in Pequod the addition of cache nodes

also grows the computational capacity of the system—that is, the ability to execute cache

joins. Parallelism is achievedbyexecutingmanycache joins concurrentlyondifferentnodes.

Thus, when a new cache node is added, the system’s computational capacity is increased.

75

6.5 Deployment

Deploying Pequod as a distributed system is simple. The developer instantiates several

Pequod instances and supplies them each with a deployment configuration. The configu-

ration includes the partitioning function, used to segment data and route cache requests,

and a network topology, used to establish communication channels between cache nodes.

At present, Pequod does not support reconfiguration.

The simplest deployment configuration defines a single, homogeneous cache pool, in

which application base data are partitioned across the pool and communication is allowed

between all nodes. However, the developer could improve the efficiency of the system by

tailoring the configuration to more closely match the application workload. For example,

consider a configuration for the Twip application that divides the cache node pool into

two groups, base nodes that store sub and post data, and compute nodes that execute the

timeline cache join. Each cache node is specialized by its placement into one of the groups.

The partitioning function ensures that the base data are stored only on base nodes, and

the network topology arranges the groups into two tiers. Figure 6.4 depicts the two-tiered

Twip deployment. Application clients request timelines from compute nodes, which in

turn fetch data from base nodes. Clients can write base data through the compute nodes,

or in slightly modified topology, directly to the base nodes. Cache nodes within each tier

do not intercommunicate.

A tiereddeployment ofTwiphas several potential advantages over the single cache pool.

Most importantly, it allows the developer tomakemore informed decisions regarding pro-

visioning. Through a separation of concerns, she can scale the computational and storage

capacities of the system independently. Further, she can make separate provisioning deci-

76

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Compute Nodes

Base Nodes

Twip
Client

Pequod

Figure 6.4: A two-tier deployment configuration for the Twip application. Application clients
communicate with a tier of nodes that compute cache joins. A second tier stores the base data,
providing access to the first tier via range subscriptions. Role specialization allows the developer
to make more informed provisioning decisions and reduces overhead.

sions for different categories of data—for example, ensuring that there is enough capacity

for a month’s worth of tweets to be held in the cache. The distinction between tiers might

carry through into the choice of hardware, with inexpensive commodity hardware in the

first tier andmore expensive (and possibly more reliable) hardware in the second. In addi-

tion toprovisioning, the specializationof nodes in a two-tiereddeploymentmight facilitate

performance and error diagnosis.

It is up to the applicationdeveloper todeterminehowPequodcanbedeployed toachieve

the application’s performance goals. The partitioning function and network topology give

the developer the tools they need to execute their desired deployment strategy.

77

6.6 Consistency

Pequod is eventually consistent: every update to base data eventually becomes visible to

all interested nodes, but since update propagation is asynchronous, different nodes might

see updates at different times.Themaximumupdate delay depends on network properties,

and is relatively low for our expected deployments (several serverswithin a single data cen-

ter). Applications that formerly interacted onlywith persistent storagemay be accustomed

to stronger consistency guarantees (e.g., external consistency). Accepting a weaker consis-

tency model is a prerequisite for using an application-level cache like Pequod. Many Web

applications are tolerant of this kind of inconsistency.

For some applications, the Pequod prototype implementation can also support “read-

your-own-writes” consistency, where writes made by a client are always visible to later

reads by the same client. To achieve this level of consistency, each client must read from

andwrite to a single Pequod cache node, and base datamust be written directly to Pequod

(using a look-through or write-through deployment) to avoid the asynchrony of database

notification.

6.7 Discussion and limitations

In this section we discuss the limitations of our design and explore alternate choices.

Distributed cache joins

We established that Pequod’s design allows for a cache join to be executed on any cache

node and that the join’s execution is restricted to exactly one node. The data necessary for

executing the join will be copied as needed to the executing node.

Pequod could support an alternate approach: splitting the join execution, evaluating

78

portions of the join on remote nodes, and combining the results into a single response.

This approach distributes the computation itself across several nodes. One advantage of

this approach is that the base data used in the partial computation need not be transferred

to the executing node. This is particularly useful for aggregate computations that operate

over a potentially large amount of data and emit a single value.

Pequod could incorporate this strategy to compute new values, but how are these data

maintained (if at all)? Is each node that computes a portion of the result responsible for

maintaining that portion locally? Should the original executing node then hold a subscrip-

tion to each portion so that it can keep a combined value fresh? Without such a subscrip-

tion, each query of this value would require a gathering step that increases the latency of

the operation.

Weexplore thepossibility of distributed cache join executionunder the assumption that

data replication is an unwanted overhead that can be avoided. However, there are some

advantages to replicating the base data and executing the join on a single node. Should

space allow, the replicated data can be stored at the executing node and used to construct

responses to future requests (and other cache joins). Of course, it might be wise to ex-

plore distributed join execution if the system is operating near capacity and the replicated

data are evicted and re-fetched repeatedly.There is no universal solution—ideally Pequod

would support both execution schemes and switch between them when appropriate.

Replication

The subscription mechanism allows cache joins to be executed on any cache node; the

input data is copied to the site of the computation as needed. With this design we trade

off storage capacity for computational capacity. But if used carelessly, data subscriptions

79

could severely limit the storage capacity of the system. Each copied cache entry consumes

storage resources that could otherwise be used to cache a unique entry. At the pathological

extreme—where every cache entry is copied to every node—the total working set size is

reduced to O(N), where N is the number of cache nodes in the deployment.

Developers can take steps to prevent excessive replication. First, the application’s cache

joins and workload can be assessed to determine the expected replication factor of the in-

put data. For example, it is likely that aTwip celebrity’s tweetswill be replicated to all cache

nodes. In theory, this is a problem; but there are not thatmany celebrities, and a great num-

ber of user timelines will benefit from a co-located copy of the tweets. The data of regular

users will also be replicated, though to a much lower degree. A developer must recognize

that replication is unavoidable in the Twip workload. He can avoid excessive replication

by carefully choosing where cache joins are executed—for example, repeated requests for

a single user’s timeline should be handled by the same cache node, if possible.

A similar problem exists in Newp: the base vote data is needed to compute the karma

scores of users that comment on an article. If the developer partitions all data ranges across

the cache nodes (say, by article identifier) and fetches article data from the corresponding

home server, the karma cache join (5.5) will be invoked on every cache node. In the worst

case, every commenter has commentedon at least one article stored in everynode.Because

Pequod replicates data for cache join execution, the vote datawill be cachedon every node.

80

For example (using numeric identifiers for articles and users):

Cache Node 1
Partitioned
[article|000, article|333⁺)
[comment|000, comment|333⁺)
[vote|000, vote|333⁺)

Replicated
[vote|334, vote|999⁺)

Computed
[karma|000, vote|999⁺)

Cache Node 2
Paritioned
[article|334, article|666⁺)
[comment|334, comment|666⁺)
[vote|334, vote|666⁺)

Replicated
[vote|000, vote|333⁺)
[vote|667, vote|999⁺)

Computed
[karma|000, vote|999⁺)

Cache Node 3
Partitioned
[article|667, article|999⁺)
[comment|667, comment|999⁺)
[vote|667, vote|999⁺)

Replicated
[vote|000, vote|666⁺)

Computed
[karma|000, vote|999⁺)

Realizing that this scheme may cause excessive overhead, the developer could implement

an alternate karma strategy. Bymanipulating the partitioning function, he could designate

one cache node to compute all karma scores from co-located vote data:

Cache Node 1
Partitioned
[article|000, article|333⁺)
[comment|000, comment|333⁺)
[vote|000, vote|999⁺)

Computed
[karma|000, vote|999⁺)

Cache Node 2
Paritioned
[article|334, article|666⁺)
[comment|334, comment|666⁺)

Replicated
[karma|000, vote|999⁺)

Cache Node 3
Partitioned
[article|667, article|999⁺)
[comment|667, comment|999⁺)

Replicated
[karma|000, vote|999⁺)

Then, when the scores are needed by other cache nodes, the output of the join is fetched

by subscription. This effectively compresses the data that is transferred between nodes by

introducing a specialization. The developer must correctly provision the system to handle

the intentional load imbalance.

Though excessive replication could potentially cripple a Pequod deployment, a reason-

able partitioning of application data and client requests can avoid this outcome. Excessive

replication is not observed in our evaluation of Twip, as we show in §9.4.

81

Failure handling

Wemake no attempt to handle failure in the design or prototype implementation of Pe-

quod.However, we recognize that some aspects of Pequod’s design cause complications in

thepresenceof failure.This is especially truewhencompared to contemporary caching sys-

tems, likememcached, inwhich cache servers donot inter-communicate.A failure inmem-

cached is localized—a server that no longer responds to client requests can be replaced

without the involvement of the other servers. By contrast, failure handling in Pequod is

more complicated: each cache node may hold subscriptions to remote data, and further,

may have promised to notify other nodes of changes to its local store.Thus, the disaster re-

covery and fault tolerance strategies in Pequodmust account for these connections and act

accordingly. We do not explore fault tolerance in this work, but are confident that existing

techniques (e.g., leases, background replication) could be applied to keep the system avail-

able in spite of a node failure. Disaster recovery (recovering without maintaining system

availability) is less problematic, as the contents of a cache node (or the entire cache de-

ployment) can be rebuilt by loading data from the persistent store and re-executing cache

joins. However, this failure mode is also less useful, as the cache is meant to be available,

even when individual nodes are offline. The necessary design and implementation effort

to validate these assumptions is left as future work.

Dynamic partitioning

Thepartitioning function in Pequod is statically defined—it is shared between applica-

tion clients and cache nodes. Using the static function, clients can directly access the cache

node that is most appropriate for a given request. The Pequod prototype implementation

does not allow the partitioning function to change throughout the life of a deployment. In

82

a more robust implementation, the function could be adjusted to account for a change in

systemdeployment (e.g., a failure).This schemeworks well as long as all participants agree

on the function in use.

An alternate design removes the application clients from the equation by introducing

coordinator nodes that act as a gateway between clients and cache nodes. Once partitioning

is hidden, Pequod could implement a number of dynamic partitioning schemes. For exam-

ple, a Twip coordinator could co-locate the data of users in a social network to minimize

replication costs. It could also monitor the computational load and available storage space

of individual cache nodes to ensure proper balancing. Some experimentation would be

necessary to determine if proxying requests through a coordination layer within the cache

is worth the inevitable complexity and latency trade-offs.

83

7
Eviction

Eviction is a challenging problem in any cache; under memory pressure, the system must

decide which data should be removed tomake space for new cache entries. At aminimum,

the cache’s eviction strategy must free enough space to complete any pending operations

without significant delay. Inmany key-value caches, key-value pairs are independent: there

are no semantically meaningful relationships among keys. This simplifies several mainte-

nance tasks, such as eviction, since keys can be treated independently. But it does not hold

for Pequod. A key-value pair in Pequod is linked to other key-value pairs in a range by its

application-defined relational overlay, and possibly tomany other key-value pairs in ances-

tor (or dependent) ranges if it was computed by (or is used as as a source in) a cache join.

This interdependence complicates eviction; the implementationmust take care topreserve

the integrity of derived key-value pairs (e.g., a sum), or perform the necessary co-evictions.

In this chapter we describe how eviction in Pequod differs from other systems. We do

not seek an optimal eviction strategy for Pequod; an optimal policy is likely application-

specific. Rather, we seek a generalized strategy for eviction that addresses the challenges

caused by interdependence and performs adequately in the presence of cache joins.

7.1 Range-based eviction

Pequod applies range-based eviction to the cache; multiple key-value pairs linked by a

relational overlay are evicted simultaneously. Range-based eviction ensures the integrity

84

of data ranges. If we evicted individual keys from a range we could no longer derive cor-

rect results from future cache join executions without additional effort to reconstruct the

range.Thus, we avoid fragmenting ranges, opting to evict them in their entirety.This strat-

egy aligns with Pequod’s treatment of data ranges as a first-class primitive.

Weassume that the system is capable of dividing the keyspace intodisjoint ranges for the

purpose of performing range-based eviction. Further, we require that each key-value pair

belong to exactly one eviction range. Since cache joins can be interleaved, producing key-

value pairs with semantically equivalent keys, a simple partitioning based on lexicographic

order is not sufficient.Our prototype implementation uses the bounds of scanoperations

to define the eviction ranges of base data.Derived ranges are defined by the bounds of their

initial cache join execution, and are associatedwith the join specification that produced the

output, guaranteeing exclusive membership of the contained key-value pairs.

In consideringwhole data ranges as a single unit, Pequod can apply simple eviction poli-

cies, such as evicting the least recently used (LRU) items. As a result, a single eviction de-

cision can cause the removal of many key-value pairs. In theory, the evicted range can be

reloaded relatively easily, by fetching data from the persistent store or executing a cache

join. Further, cache misses caused by the eviction are also localized, potentially restricting

the scope of the ill effects in the application domain (e.g., to a single Twip user).

Interconnected cache entries cause another problem: cascading evictions.The cache join

mechanism creates dependencies between data ranges.With the default maintenance pol-

icy, derived data are kept fresh as base data are modified. If a base range is evicted (along

with the installed updaters), we can no longer guarantee that the derived data are fresh.

Thus, upon eviction of base data, all transitively derived ranges are also evicted. Unsurpris-

ingly, cascading eviction can cause significant performance problems. For example, if Pe-

85

quodevicted the tweets of aTwip celebrity,millionsof user timelinesmight alsobe evicted.

And the cascade is not limited to a single cache node; when base data are evicted from a

node, all subscriptions to that data are canceled.The cascade will continue on through the

subscribing nodes.

Cascading eviction is a serious problem for Pequod. The remainder of this chapter pre-

sents mechanisms for mitigating its effects on system performance.

7.2 Policies

Each eviction decision in Pequod involves a range of data. But not all ranges have equal

eviction cost.There are two costs to consider, the initial cost of performing the eviction and

the subsequent cost to reload the evicted data on a future cache miss. Every key-value pair

stored in a cache node belongs to a data range, which is categorized in one of three ways:

as a base range (caching data from the persistent store), a remote range (data copied from

another cache node via subscription), or a derived range (computed by a cache join). The

costs of evicting a base range and a remote range are similar—in addition to removing the

key-value pairs in the range, Pequod evicts any derived ranges that use the evicted range as

an input. The cost of reloading these ranges is added latency (though that latency is likely

higher for base ranges). If we consider the computational cost of re-executing any derived

ranges, the total cost of evicting a base or remote range could be quite high. By contrast,

the cost of evicting a derived range is relatively low. Unless the derived range is used in a

chained join, we need consider only the computational cost of re-executing the join on a

subsequent scan. And for some applications, the re-execution will have a much narrower

scope—for example, if we evicted a Twip timeline that covered the last month but only

re-execute the join for the past hour.

86

By understanding the costs associated with evicting ranges in Pequod, we can begin to

devise more sophisticated eviction policies. The Pequod prototype implementation sup-

ports three eviction policies:

− Random. A range is selected at random for eviction. There is no distinction made

between base, remote, and derived ranges; all are equally likely to be selected. This

is by far the simplest eviction policy implemented in Pequod. It is appealing due

to its simplicity, but is unlikely to perform well for applications that have skewed

workloads. For these applications it is likely advantageous to evict ranges based on

frequency of access.

− Least recently used (LRU). The last access time of every range is recorded and

stored in a sorted metadata structure. The range that was least recently accessed

is selected for eviction, regardless of type. This policy operates under the assump-

tion that recency of access correlates positively with frequency of access; that is, if

a range was recently accessed it will be requested again in the near future. This is

true for some applications—Twip, for example, has a skewed workload with some

users checking their timelines more frequently than others. The last access time is

not transitively updated; accessing a base range will not modify a dependent’s po-

sition in the LRU list. Likewise, accessing a fresh derived range will not affect its

inputs’ positions. However, if an input range is accessed during join execution—for

example, in support of forward execution or a lazy update—the last access time of

the input range will be updated accordingly.

− Category LRU.The ranges are categorized by type—base, remote, and derived—

and are added to category-specific LRU lists. The system ranks the categories and

evicts the least recently used range from the lowest priority list first. The lists are

87

processed in priority order; when a lower priority list is exhausted, the next higher

list is used. Thus, given the ranking derived < remote < base, the system will evict

all derived data prior to evicting any base data.

Other eviction policies are possible and may be worth pursuing as future work. For ex-

ample, Pequodmight combine the category LRUpolicywith a notion of connectedness—

evicting the base and remote ranges with the fewest dependent ranges first (to limit the

cascade effect). Or, the system could compute an expected cost of eviction that includes

the reloading cost and the number of anticipated cache misses. This type of calculation,

which is similar to the cost analysis performed by a database query optimizer, could use

metrics collected at runtime in addition to any static information about the ranges (such

as the join structure). Clearly, this is a complex solution to the eviction problem that may

or may not outperform simpler strategies. These concepts are not currently implemented

in Pequod, and their evaluation is outside the scope of this thesis.

7.3 Tombstones

Cascading evictions pose a significant problem for Pequod; cache joins are useful, but

their utility is irrelevant if the systemperformspoorly in the face of eviction. Pequod avoids

cascades by installing an evictionpolicy that favors uncoupled ranges,mitigating their ill ef-

fects with lazy invalidation. Lazy invalidation defers eviction cascades by limiting the scope

of the immediate eviction to the selected range.The idea is simple: if Pequod can correctly

maintain the freshness of a derived range in the absence of its base data, then it is safe to

remove the base data and keep the derived data in place. For example, a cache node for

Twip could evict the tweets of a user without evicting his followers’ timelines.

88

To guarantee that derived data are kept fresh, Pequod must process all future updates

to the evicted base range as if it were cache resident. This means that any installed up-

daters need to be triggered when the base range is modified. Pequod tracks evicted base

data ranges with a piece of metadata called a tombstone. Tombstones provide a context to

Pequod for the purpose of applying updates. A tombstone stores the bounds of the evicted

range and inherits the installed updaters. The use of tombstones changes the update logic

slightly; when a put or remove operation is performed on a cache node, Pequod first

looks for a tombstone that covers the given key. If found, the tombstone’s updaters are in-

voked and the operation does not modify the store. Tombstones are only used when an

evicted range has dependencies that Pequod would like to maintain.

Tombstones are not a permanent solution to the cascading eviction problem; they are

used only tomaintain the freshness of existing derived ranges. Pequodwill eventually need

to invalidate and evict the derived ranges for one of the following reasons:

1. The evicted rangemust be scanned to fulfill a client request or as part of a new cache

join execution.

2. An update is made that cannot be handled by the tombstone context alone (more

on this below).

In both cases, the actual key-value pairs of the evicted range are needed to complete a pend-

ing client request. At this point, Pequod will remove the tombstone for the evicted range

and evict any transitively derived ranges. Thus, the cascade is not completely avoided, it

is just deferred. Lazy invalidation allows the system to continue operating as long as the

evicted data are not needed.

Figure 7.1 depicts how tombstones are used to defer eviction cascades. User ann checks

her timeline, which establishes a subscription for ken’s posts (1).The remote range is then

89

Client Cache
Node 1

Cache
Node 2

scan(tline|ann|100, tline|ann⁺)
scan(sub|ann, sub|ann⁺)
scan(post|bob|100, post|bob⁺)

scan(post|ken|100, post|ken⁺)
scan(tline|ann|100, tline|ann⁺)

subscribe(post|ken|100, post|ken⁺)

evict [post|ken|100, post|ken⁺)

invoke updaters

modify(post|ken|500, YOLO, insert)

install tombstone

scan(tline|ann|600, tline|ann⁺)
scan(tline|ann|600, tline|ann⁺)

scan(tline|bob|650, tline|bob⁺)
invalidate [tline|ann|100, tline|ann⁺)
delete tombstone

unsubscribe(post|ken|100, post|ken⁺)

subscribe(post|ken|650, post|ken⁺)

scan(post|ken|650, post|ken⁺)
scan(tline|bob|650, tline|bob⁺)

(1)

(2)

(3)

(4)

(5)

(6)

Figure 7.1: A tombstone defers an eviction cascade. The posts of user ken are evicted after user
ann’s timeline is generated. A tombstone marking the eviction is installed (2) and the timeline
remains valid. A subsequent post by ken (3) and a timeline check by ann (4) are processed
as normal. When user bob logs in, his timeline construction requires the data from the evicted
range, triggering the cascade and invalidating ann’s timeline (5). The subscription to ken’s posts
is broken, and a new subscription is made to complete bob’s timeline (6).

90

evicted by the cache and a tombstone marking the range [post|ken|100, post|ken⁺) is

installed (2). A subsequent modification to the subscribed range, a new post by ken, is

processed by the tombstone, triggering an update to ann’s cached timeline (3). Another

timeline check by ann (4) requires no additional computation. Eventually, a timeline check

by bob, who is subscribed to ken and has no cached timeline, triggers the eviction cascade

and invalidates ann’s timeline.Thecachenodebreaks the old subscription to ken’s posts (to

stop notifications) and makes a new subscription that covers bob’s timeline request (6).

Pequod could use the updaters attached to the defunct tombstone to retain portions of

derived timelines—for example, that of ann—by transferring them to the new base range

subscription. Our prototype implementation instead reconstructs the derived data when

they are next requested.

The ability to apply an update using the context provided by a tombstone is determined

by the operator used in the updater and the cache operation being performed. Some op-

erators, such as copy, can always be applied. For example, if we evict a Twip user’s tweets

from a cache node and retain their followers’ timelines, that user could post a new tweet

without triggering an eviction cascade. The updater would insert a new key into each of

his followers’ timelines. In fact, he could even remove an old tweet without incident—Pe-

quod will determine the timeline key for each follower and remove it, if it exists. There is

no need to know if that key actually existed in the evicted range. The only context needed

by the copy operator is provided by the key-value pair in update operation.

However, some updaters require more information than can be provided by the mod-

ifying operation. For example, if Pequod evicts a range that is used by a count operator,

how should it handle future put and remove operations on that range?Without knowing

if a key is already counted in the aggregate, Pequod cannot guarantee the accuracy of the

91

derived data. To solve this dilemma, Pequod attaches another piece of information to some

tombstones: a Bloomfilter [8]. A Bloomfilter is a space-efficient data structure that can be

used to test set membership. When a range is evicted, each key in the range is recorded in

the Bloom filter. The filter is then used to determine how operators such as count should

behave on an update; for put on a count range, Pequod will only increment the derived

value if the key did not previously exist in the evicted range.

Unfortunately, Bloom filters cannot be used to test set membership exactly; a Bloom

filter is a probabilistic data structure, and there is some probability of false positives. For

example, if we wanted to remove a key from the counted range and the Bloom filter indi-

cates that the key was present in the evicted range, there is a chance that the Bloom filter

is wrong. Decrementing the count in this case might lead to incorrect values. However, a

Bloom filter can indicate with certainty that an element is not a member of set. For this

reason, Pequod uses the Bloom filter only to test for negative membership.This allows the

system to perform some updates (such as incrementing the count for new keys) and fore-

stall the eviction cascade.

A Bloom filter is just one piece of contextual information that can be associated with a

tombstone. In the Pequod prototype, only updaters that apply count and sum use Bloom

filters. Updaters that apply min and max use the store itself, inspecting the existing derived

output before taking action. Figure 7.2 summarizes how tombstone metadata is used to

determine if an update can be applied to an evicted range.

It is inevitable that someupdateswill require the evicted range to be reloaded. Even if we

could efficiently and accurately test for set membership, the sum operator still needs access

to evicted values to correctly handle overwrites. In addition, operators such as min (or max)

need to scan the entire range to produce a new value should the key that is associated with

92

Operator put remove

copy yes yes

Bloom match?
True False True False

count no yes no yes
sum no yes no yes

Current min/max key?
True False True False

min ⋆ yes no yes
max ⋆ yes no yes

⋆ - yes if the new value is greater/less than
the current max/min, no otherwise.

Figure 7.2:A table for determining the applicability of updates to a previously evicted range.The
metadata in the tombstone, existing derived output, and the key-value pair of the update opera-
tion are used to determine if an update can be applied or if the evicted range must be reloaded.

the current minimum (or maximum) be removed. However, the developer may be able

to avoid these cases by carefully constructing cache joins and application update seman-

tics. For example, Twip uses only the copy operator, which allows any update to an evicted

range.Newp uses the count aggregator to produce user karma from votes, but its workload

fits well with the Bloom filter. If we tune the filter to have a sufficiently low false positive

rate and votes are rarely rescinded, the vast majority of updates will be new insertions that

pass the filter. These updates are easily handled by the count operator.

In summary, Pequod can defer the ill effects of cascading evictions by storing a small

amount of information about the evicted range and keeping derived data in place. Until

the evicted data are truly needed, the derived data are maintained and used to respond to

client requests.Depending on the applicationworkload, lazy invalidation can reduce cache

churn and improve the hit rate.

93

7.4 Discussion and limitations

The ideas presented in this chapter make eviction overhead more manageable in Pe-

quod. However, there are some issues with this design that need addressing.

Metadata

Tombstones are a useful mechanism for delaying cascading evictions. Unfortunately,

the tombstones themselves take up space; range bounds, updaters, Bloomfilters and other

metadata, though likely smaller in size than the evicted range data they represent, con-

sumememory that could otherwise be used to store cache entries. Eventually, the amount

ofmemory used for tombstoneswill be nontrivial.The evictionmechanism,which focuses

on evicting data ranges, must also take metadata usage into account and weigh the cost of

evicting the tombstones (causing cascades) versus the need for more space in the store

(which can improve the hit rate). We do not explicitly evict metadata in the Pequod pro-

totype implementation; tombstones are removed when evicted data are reloaded or there

are no longer any dependent ranges.

Range splitting

Theuseof ranges as theunit of eviction allowsPequod to apply simple eviction strategies

to an ordered store. The eviction mechanism does not recognize subranges or individual

keys within a range. It makes sense for some ranges to be handled as a unit—for example,

a Twip user’s subscription list is processed in full, never in part. But other ranges, such as

the tweets or timeline of a Twip user, have subranges that are more valuable to the appli-

cation than others. For example, Twip users rarely request historical timelines. The recent

timeline data (and transitively, the recent posts of the users that make up the timeline) are

94

more likely to be accessed and should remain cache resident, if possible. As a result, it may

be beneficial to just evict the older portion of these ranges and retain the newer subrange.

To avoid evicting useful data, it might be advantageous for Pequod to recognize some

basic patterns in data ranges. Using this information, the system could preferentially select

subranges for removal or preservation. For example, Pequod might exploit the fact that

Twip post and tline ranges grow in one direction and choose to evict older data first. But

howwould Pequod recognize these patterns?We could add an annotation to the join spec-

ification that informs the system of common patterns, such as growth in a single direction.

Using this information, Pequod could automatically split the rangemetadata (e.g., join sta-

tus ranges, updaters) used internally to track the validity cache join inputs and outputs.

Supposing that Pequod can recognize range patterns and subdivide ranges, how would

the system automate this process?That is, howdoes Pequod knowwhere tomake the split?

One solution is to have the developer use domain knowledge to set some threshold—for

example, the number of keys or amount of time that defines a “recent” timeline. However,

this introduces yet another tuning parameter to the system. Instead, we propose a mech-

anism for automated range splitting that uses the scan requests themselves to define the

partition point. It works in this way: for each access, with some small probability the range

being scanned is split at the lower bound of the scan request.The two subranges can now

be considered individually by the eviction mechanism. The lower range will not likely be

accessed again and will work its way toward the head of the LRU. The latter portion will

continue to be accessed (and possibly split again) and remain toward the tail of the LRU.

Range splitting is just one optimization that can be made to the range-based eviction

mechanism in Pequod. We do not implement this feature in the prototype; we discuss

it here to highlight one shortcoming (and subsequent solution) of using data ranges as

95

units. The above example that automates the splitting process works for ranges that grow

in a single direction. Alternate approaches would need to be developed for ranges that are

modified in other ways.

96

8
Implementation

We describe our prototype implementation of Pequod, a proof-of-concept system that

serves as a platform for evaluating our design choices. We do not describe the entire sys-

tem here; rather, we cover the data structures used to store cache entries and metadata

and several optimizations that allow Pequod to achieve its performance goals. The code

for Pequod is available online for download at http://github.com/bryankate/pequod.

The Pequod prototype is implemented in C++ as a single-threaded, event-driven pro-

gram. We use Tamer [39], a C++ language extension that makes event-driven program-

ming more manageable. As a single-threaded program, commands issued to Pequod are

executed to completion—in isolation andwithunrestricted access to theprogram’s state—

or until blocked by I/O.

A distributed deployment of Pequod is composed of multiple instances of this program

communicating via RPC.The prototype uses a customRPC layer that establishes reliable,

asynchronous messaging channels between cache nodes and with clients. Pequod uses

JSON structured messages [17], formatted for the wire with MessagePack [32], to invoke

cache commands and return responses.

97

http://github.com/bryankate/pequod

8.1 Ordered data storage

Pequod stores key-value pairs in red-black trees. A traditional key-value cache typically

stores cache entries in a hash table, which is an appropriate structure in the absence of

multi-key operations. We cannot use a hash table as the primary data structure in Pequod

because we expose an ordered store abstraction to the application developer.Though tree-

based stores support range scans (which, in turn, enable cache joins), they introduce over-

head (relative to a hash table implementation) for every access to the store.

Naturally, we are concerned thatO(log n) time complexity for store lookups will hinder

Pequod’s ability to remain competitive with other caches. One way to minimize this over-

head is to keep the value of n as small as possible. Rather than artificially limiting the total

number of cache entries, we partition the store into logical tables. Each table has a separate

red-black tree that holds keys with the same prefix—for example, those that begin with

sub, post, or tline. Pequod uses the relational overlays of the installed cache join specifi-

cations to automatically define the table prefixes (the portion of a key’s overlay prior to the

first slot definition). By partitioning the store in this way, we effectively reduce the value of

n for any given lookup to nprefix, the number of keys that share that prefix. Separating con-

cerns for different ranges with this design sped up Pequod significantly relative to a single

store (§9.8).

An auxiliary structure, the hash index, associates the table prefix with the root of that

table’s tree.The hash index is used to jump directly to the appropriate table when the store

is accessed. For example, if aTwipuser generates a new tweet, Pequodbegins its traversal of

the store (to find the correct insertion point) by jumping directly to the post table.Despite

being partitioned in this way, the cache can be accessed as a single ordered store; Pequod

ensures that cross-table queries are handled correctly.

98

Pequod also uses red-black trees to store range-based metadata, such as the join sta-

tus ranges, updaters, active subscriptions, and tombstones.When possible, thesemetadata

are stored in the appropriate table structure so that fewer intervals are considered on each

lookup. The nodes that represent the metadata ranges in the interval trees are also used

to track ranges for eviction. Pequod uses Boost intrusive data structures [9] that allow a

metadata tree node to double as an entry in eviction data structures (e.g., node in a LRU

list). The intrusive data structures save space in the cache by sharing a single range object

and avoiding superfluous lookups in many cases.

8.2 Optimizations

In this section we focus on implementation details that allow Pequod to approach (and

in some cases surpass) the performance of contemporary key-value caches. Optimizations

are described here and evaluated in §9.8.

Subtables

Thecombinationof red-black trees and ahash index is effective at reducing the overhead

of tree lookups.Themechanism is not reserved for top-level tables; Pequod can further di-

vide the store into subtables to provide even faster access to specific ranges of data. The

developer can specify a slot in the relational overlay that is used to partition a top-level ta-

ble. For example, theTwipdeveloper could indicate that the sub, post, and tline tables are

all divisible by the user slot. As a result, Pequod will create a separate table structure, with

its own red-black tree and range metadata, for each unique user. The subtable of a specific

user can be accessed in O(1) time by looking up its root in a hash index. Subtables pro-

vide a significant performance improvement for applications that have well-defined data

99

Range Metadata

Hash Index
sub
tline

post Store

Global Table

Range Metadata

Hash Index
tline|ann

Store

tlineTable

subTable

tline|annTable

postTable

Figure8.1:Thestructure of thedata store, usingTwip as an example.Thekeyspace is divided into
three top-level tables, which are further divided into per-user subtables. Access to an individual
user’s data is expedited by querying the hash index at each level.

boundaries and rarely request data across these boundaries (such as Twip and Newp).

The layered table abstraction is implemented in Pequod using a tree-of-trees approach.

A global table contains a red-black tree, range metadata (e.g., join status ranges and tomb-

stones), and a hash index. Each node in the tree is either a key-value pair or a pointer to

a subtable, which has its own set of data structures. In theory, this nesting of tables could

continue indefinitely. However, the Pequod prototype limits the number of layers to two.

Figure 8.1 depicts the structure of the two-level store for Twip. Using this structure, to ac-

cess the root of user ann’s timeline, Pequodwould first look up the tline table in the global

hash index, then the table for ann in the tline table’s index.This ismuch faster than travers-

100

ing the entire store from the root. However, such a traversal is possible; Pequod can handle

any data request with a traversal from the root, descending into subtables as necessary.

Output hints

Inmany of our applications, each update to a derived range eithermodifies the same key

as the previous update (as is common for the count operator) or inserts a new key immedi-

ately after the previous update (as when inserting a fresh post into a Twip timeline). Both

types ofmodification can be performed inO(1) amortized time given a pointer to the last-

updated key. Each join status range therefore maintains a pointer to its last-updated key.

We call this pointer the output hint. A reference counting scheme ensures that the hint stays

valid even if the underlying key-value pair is removed from the store. This optimization is

designed to avoid a costly tree lookup for every update to a base range.

Value sharing

The copy operator often requires Pequod to install multiple copies of a value into dif-

ferent output ranges. For example, Twip inserts a copy of a user’s tweet into each of his

followers’ timelines. To reduce memory overhead, Pequod allows multiple output ranges

to share the source’s value—that is, to point to the same memory. A reference counting

scheme ensures that the value remains available even when the original key-value pair is

removed from the store.

This optimization fits in naturally with in-cache materialized views; when Pequod gen-

erates the output it can recognize that the two values are meant to reference the same con-

tent. Alternatively, if the application performed materialization outside of the cache and

merely inserted key-value pairs for each derived output, Pequod would be unable to ap-

101

ply this optimization—it treats each client-provided value as unique. Value sharing is only

useful for joins that use the copy operator, but it introduces no overhead on other joins.

102

9
Evaluation

We evaluate Pequod’s performance as an application-level cache using workloads that fea-

turematerialized views.We show that Pequodoutperforms traditional key-value caches on

these workloads and that the system can scale to handle realistic load. We investigate the

potential bottlenecks in our design, demonstrate the utility of eviction tombstones, and

explore the cache join composition and performance annotations. We conclude that our

design is sound: Pequod cache joins are a viable solution to the cache freshness problem.

9.1 Experiment setup

We evaluate Pequod using two hardware configurations, a multiprocessor and a cluster

of Amazon EC2 virtual machines (VMs). The multiprocessor is an Amazon EC2 instance

with 32 cores and 244 gigabytes of RAM running Ubuntu Linux 13.04. The Amazon EC2

cluster, used to evaluate scalability, is composed of many VM instances connected by a 10

gigabit network.EachVMhas32cores, 60–244gigabytesofRAM,and runsAmazonLinux

2013.09.2. All Amazon EC2 instances run with hardware-assisted virtualization (HVM)

enabled.

Application clients communicate with Pequod nodes using RPC. Experiments on the

multicore machine use TCP over the loopback interface for RPC invocation. Clients are

event-driven processes that keep many RPCs outstanding. We run enough clients to satu-

rate the Pequod nodes, when applicable.

103

Wedonot evaluate database interaction; Pequod is deployed as a look-through cache—

applications send it updates directly. Notification bottlenecks in the database made the

performance of ourwrite-around deployment uninteresting. Althoughwe enable eviction,

it never triggers in our experiments (with the exception of the experiments that measure

eviction policy directly, §9.5).

We ranmost experiments several times andobserved little tonoperformance variability.

Unless otherwise specified, our results report the mean value of three experiment runs.

Twip workload

In most of our experiments, Pequod is configured to run Twip. The underlying data are

derived from a Twitter social graph obtained in 2009 [27]. The full graph, which contains

approximately 40,000,000 users and 1,400,000,000 relationships, is used in scalability ex-

periments. All other Twip experiments use a sampled subgraph containing approximately

1,800,000 users and 72,000,000 relationships. We sample the original graph by selecting

approximately 4.5%of users uniformly at random, preserving the existing relationships be-

tween chosen users. Figure 9.1 depicts the distribution of followers per user for both social

graphs. The majority of users have 10 or fewer followers, and only 1% have 1000 or more.

The most popular user has nearly 3,000,000 followers.

Our clients model the actions of individual Twip users. Each modeled user:

1. “logs in,” obtaining a list of recent tweets in their personalized timeline;

2. repeatedly checks for new tweets, subscribes to other users, and posts new tweets;

3. and logs out (though they may log in again later).

The incremental timeline updates in step (2) return many fewer tweets than the initial

checks at login time. These events occur in the rough ratio: 5% initial timeline checks, 9%

104

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

N
um

be
ro

fF
ol
lo
w
er
s

% of Twip Users

Full
Sampled

Figure 9.1:The Twip follower distributions for the full 2009 Twitter social graph and the sam-
pled subgraph used in our experiments. In the full graph, 62% of users have 10 or fewer followers,
92% have 40 or fewer, and 1% have over 1000.Themost popular user has almost 3,000,000. Note
the log axis.

new subscriptions, 85% incremental timeline updates, and 1% posts. This breakdown of

events is derived from information on the real Twitter [25] workload. Users post with dif-

ferent likelihoods. The probability that a user posts a message is proportional to the log of

their follower count, so more popular users tweet more often.

We define a benchmark, Twip-small, by combining this workload with the sampled

Twitter subgraph. In this benchmark, 70% of users are active (the remainder never check

their timelines) and each user checks her timeline 50 times. The result is a fixed work-

load comprising approximately 62,000,000 timeline checks, 6,200,000 new relationships,

and 620,000 new posts. This benchmark is used in the majority of experiments. A second

benchmark, Twip-large, is used in scalability experiments.The sameworkload is applied

to the full 2009Twitter graphwith 70%of users active.This benchmark comprises approxi-

mately 1,400,000,000 timeline checks, 140,000,000new relationships, and14,000,000new

posts.

105

9.2 System comparison

In this section we compare the performance of Pequod against other systems: mem-

cached 1.4.16, Redis 2.8.5, and PostgreSQL 9.1. Both memcached and Redis represent

the state-of-the-art in distributed key-value caches. These systems are used extensively in

Web application deployments, including the construction andmaintenance of cached user

timelines at Twitter [25]. Neither product supports in-cache materialization—all com-

putation is performed in client routines. We use PostgreSQL as an example of a system

that does support server-side computation and materialization. We compare against Post-

greSQL using an atypical configuration; the database is deployed in-memory as a cache.

Key-valueworkload

We begin our evaluation of Pequod with a basic key-value cache comparison. We want

to analyze the potential performance overhead caused by our tree-based implementation.

To quantify this effect, we use a third-party benchmarking tool,Memtier Benchmark [31],

to execute a pure get workload on Pequod, memcached, and Redis. Given that Pequod is

optimized for cache join execution and maintenance, we do not expect to outperform the

comparison systems.

The benchmark is run against a single server instance of each cache type. The bench-

mark client uses 4 threads with 50 active connections each to saturate the cache with get

requests. The cache is pre-populated with 12 byte keys and 512 byte values. The keys con-

sist of a common prefix, “m|”, and a 10 digit, zero-padded number.

The experiment is designed so that every request results in a cache hit.Thebenchmark is

executed for 30 seconds andmetrics are collected by the benchmark client. BothRedis and

memcached are configured to optimize performance for this experiment; disk checkpoint-

106

0
20
40
60
80
100
120
140
160
180

0.0001 0.001 0.01 0.1 1 10 100

ge
t
Th

ro
ug
hp

ut
(t
ho

us
an
ds
/s
)

Store Size (millions)

Pequod
Redis

memcached

Figure 9.2:A comparison of the throughput achieved by Pequod, memcached, and Redis using
a pure get workload and a single cache server. Overhead caused by tree lookups reduces average
throughput by a factor of 1.14x as the store grows from 100,000 to 100,000,000 key-value pairs.
Redis and memcached performance remains relatively stable due to implementations based on
hash tables. Note the log scale axis.

ing and eviction are disabled and the most efficient binary protocols are used for RPCs.

We run this benchmark multiple times on the multiprocessor, varying the store size of

the cache in each iteration. The store size varies from 100 to 100,000,000 key-value pairs

over the course of the experiment. We expect the performance of memcached and Redis,

both implemented with hash tables, to remain roughly unchanged, but we expect the per-

formance of Pequod to drop somewhat because of its O(log n) lookup cost.

Figure 9.2 shows the experiment results. Pequod is performance competitivewithmem-

cached and Redis up to 100,000 key-value pairs. As the store grows larger, each lookup

incurs more overhead; the total throughput drops by a factor of 1.14x at 100,000,000 key-

value pairs. This result is not necessarily problematic—Pequod is designed for in-cache

materialization, not pure key-value workloads. In cache join scenarios, optimizations like

hash indexes and subtables (§8.2) are expected tomitigateO(log n) overheads.The devel-

107

oper also has the option of partitioning a large store across many Pequod instances, each

with smaller stores. Regardless, this experiment demonstrates that our prototype performs

nearly as well as mature key-value caches on an unfavorable (to Pequod) workload.

As an aside, this experiment also highlights a storage overhead; Pequod adds approx-

imately 297 bytes of overhead per key-value pair. Both memcached and Redis store key-

value pairs with less overhead—approximately 104 and 115 bytes, respectively. Some of

this overhead is attributed to our choice of data structure, but a good deal comes from im-

plementation optimizations meant to speed cache join execution (e.g., flags, pointers to

range metadata). Reducing this overhead is important to improve Pequod’s resource uti-

lization, but is left for future study.

Materializationworkload

We next compare Pequod with other systems on a workload that includes material-

ization. We use the Twip-small benchmark to model a Twip deployment. The goal of

this comparison is to determine if in-cache materialization, in addition to improving pro-

grammability, will improve system performance. Ideally, Pequodwould pay no penalty for

this convenience—it should perform no worse than its contemporaries.

Only one of our comparison systems, PostgreSQL, is capable of in-cache materializa-

tion. Both memcached and Redis require a “client-managed” implementation of material-

ization. A client-managed application executes the same logic as a cache join, but it does so

on an application server.Multiple round trips to the cache are required to construct the ini-

tial timeline (in the case of a cachemiss) and keep cached timelinesmaintained when new

content is generated. Twitter uses a client-managed approach to cache user timelines [25].

Our Twip application executes in two modes: a client-managed mode that performs

108

joins in the client and a cache-managed mode that relies on in-cache materialization. An

adapter is used to interact with the cache—the application is agnostic to the system under

test. We compare Pequod to the systems listed above in addition to “client-Pequod”: an

execution of the Twip application in client-managed mode using Pequod as a key-value

cache (with range support); no cache joins are used. Client-Pequod lets us evaluate the

performance of in-cache materialization in isolation.

Each system runs the same Twip-small workload to completion as quickly as possi-

ble.Neither Redis normemcached supports in-cache computation, so as in client-Pequod,

their clients actively manage user timelines; Redis stores timelines as sorted sets of tweets,

and memcached as a string to which tweets are appended. PostgreSQL, in contrast, does

support in-cache computation. Although our test version lacks automatically-updatedma-

terialized views, we use triggers to get a similar effect.

Each system is given six cores in our multicore machine. PostgreSQL runs a single pro-

cess withmultiple threads, while the other systems partition the store and use one process

per core. The machine’s remaining cores run client processes; for each system, we used

the number of client processes that produced the best system runtime. We configure all

systems so that data is stored in memory and consistency is relaxed as much as possible.¹

Figure 9.3 shows the results. Pequod, which uses materialized views, runs a factor of

1.64x faster than client-Pequod, which doesn’t. The penalty is roughly equally divided be-

tween RPC overhead (client-Pequod makes many more RPCs) and insertion overhead

(client-Pequod doesn’t benefit from output hints or value sharing). Although a more op-

¹For PostgreSQL, we allocate a shared memory buffer large enough to hold our entire data set, place
the data store in an in-memory file system, and tune for performance:we disable fsync, synchronous commit,
and full page writes and set bgwriter lru maxpages to zero.

109

System Runtime (s)

Pequod 197.06 (1.00x)
Redis 262.62 (1.33x)
client-Pequod 323.29 (1.64x)
memcached 784.43 (3.98x)
PostgreSQL 1882.78 (9.55x)

Figure 9.3: Time to process the Twip-small benchmark to completion using Pequod and re-
lated systems. Smaller numbers are better. Pequod outperforms its closest competitor, Redis, by
a factor of 1.33x.

timized client-managed caching system could beat Pequod (perhaps by implementing Pe-

quod-like functionality specialized for the application), RPC overhead and program com-

plexity remain as challenges for any client-managed or special-purpose system. Pequod

runs a factor of 1.33x faster than Redis: join support does not sacrifice the performance

advantages of key-value caches. Redis runs a factor of 1.23x faster than client-Pequod, how-

ever.This difference is due to Redis’s hash table data structure, which offersO(1) lookups.

Though tree optimizations could speed up client-Pequod somewhat, unordered stores of-

fer fundamental performance advantages over ordered stores. Memcached runs a factor of

3x slower than Redis: the Twip workload has more writes than memcached prefers. The

traditional database, despite running in memory with relaxed ACID guarantees, is not a

suitable replacement for a Web application cache. Pequod outperforms PostgreSQL by

nearly an order of magnitude (9.55x). Widely-available databases with true materialized

view support were also evaluated; they performed similarly to PostgreSQL.

In summary,weexceedour goal of performingnoworse thanexisting applicationcaches,

at least for the Twip materialization workload. For some applications, Pequod cache joins

are both simpler and faster.

110

9.3 Computational variability

Pequod is specifically designed for in-cache computation using cache joins. One con-

cern with Pequod is that in-cache computation will increase the latency of cache oper-

ations when computation is performed (and that the latency varies with the amount of

computation). This is a valid concern when comparing Pequod to existing key-value app-

lication-level caches that offer consistent performance (albeit with restricted functional-

ity). To make informed provisioning decisions, the developer should be aware of the la-

tency Pequod adds to cache queries. Of course, the latencies will be workload dependent;

requesting a fresh Twip timeline will require no computation, whereas a stale or missing

timeline will prompt a partial or full join execution.

We measure the query latency in Pequod using the Twip-small benchmark. We run

Twip in twomodes: first, with the timeline cache join installed in the typical way, comput-

ing timelines and keeping them fresh incrementally; and second, with a pull annotation

that forces timelines to be computed anew on each request. Running Twip in these two

modes, we generate timeline requests that

− cover a fresh range and require no computation;

− follow a subscription change and require a partial computation;

− and require a full computation (all requests in the pull experiment).

We measure the round trip time (RTT) of each timeline check in the client. We isolate the

measurements frombuffering and load effects by executing thebenchmark synchronously:

a single client issues one request at a time. The experiment is conducted on the multipro-

cessor using a single Pequod cache node.The cache is pre-populated with the subscription

lists of all users and 1,000,000 historical posts.Thus, all data needed for timeline construc-

tion are cache resident. All active users are logged in prior to the experiment, so each user

111

0

20

40

60

80

100

50 100 1000

Ti
m
el
in
e
C
he
ck

C
D
F
(%

)

Round Trip Time (μs)

No computation
Partial computation
Full computation

Figure 9.4: Cumulative distribution functions (CDFs) of timeline check RTTs in Twip-small
(without network latency). Checks that require little or no computation exhibit low variance.
Full timeline computations are significantlymore expensive on average and have higher variance.
Note the log scale axis.

begins with a valid join status range. This avoids measuring the full computation required

for initial timeline construction (which is measured explicitly in the pull join mode).

Figure 9.4 shows the results of a single experiment run. The experiment turns out as

we expect: requests for fresh timelines have the lowest RTT (mean: 75.98μs, σ: 7.38), fol-

lowed by those that require partial updates (mean: 81.54μs, σ: 8.68), and those that are

computed in full (mean: 130.28μs, σ: 300.25). The high variance of full timeline compu-

tation is a reflection of the variable workload: most users subscribe to tens of others, but

some subscribe to tens of thousands. In contrast, a partial computation in Twip typically

handles a single subscription change and has much lower variance.

The results show the relative difference in computation time of fresh, stale, and missing

timelines. This difference is attributed to the amount of work Pequod must do for each

join execution (the number of ranges scanned, keys enumerated, and key-value pairs gen-

erated). However, we are also interested in the overhead of cache join queries. Tomeasure

112

query overhead, we compare the timeline checks with a basic key-value operation. Using

Memtier Benchmark, we measure the RTT of get requests issued synchronously to a sin-

gle cache node.The cache is populated with 1,000,000 key-value pairs, each with a 12 byte

key and 1 kilobyte value. Pequod, Redis, and memcached all average 60μs for a basic get.

Timeline checks that do not require computation average 75μs. We attribute some of this

difference to cache join overhead—querying range metadata to determine validity—and

some to scan overhead—iterating through the store to enumerate key-value pairs.Though

discernible in this micro-benchmark comparison, the observed overhead is negligible.

In summary, we verify that join execution will cause variability in request latency. Fur-

ther,we recognize that full computation can cause significant spikes and shouldbe avoided.

This topic is studied further in §9.6. The developer should also determine the computa-

tional requirements of their application to properly provision the cache.

9.4 Scalability

Pequod is designed as a distributed service that can be scaled to suit the needs of an

application as it grows. As such, we expect the addition of resources to a Pequod deploy-

ment to produce an increase in the computational and storage capacities of the system. In

this section we conduct experiments to demonstrate scalability and identify any potential

limitations. The results shown are from a single experiment run.

Scaling computation

Weconduct an experiment using aTwipworkload scaled tomatch the query rates of the

realTwitter service [25]. As of 2012,Twitter users generatednewcontent at an average rate

of 3,000 tweets per second. During peak hours, the service averaged 6,000 new tweets per

113

second. In our experiment, we vary the post rate from 1,000–13,000 tweets per second.

At these target rates, the Pequod deployment is expected to handle 111,000–1,443,000

client requests per second (100 timeline checks and 10 new subscriptions for every new

post). Each run of the experiment is executed in the VM cluster with Pequod deployed in

a two-tier configuration (8 base nodes and 18 compute nodes). The cluster is provisioned

adequately to prevent a CPU bottleneck at the highest load tested. The Twip clients, 456

in total, collaboratively generate load at the target rate for 5 minutes. The cache is warmed

by logging in all active users prior to the experiment.

We run the experiment on a fixed deployment to isolate the varying computation from

other factors that could affect join performance as the workload grows, such as a change in

the way users are distributed across the nodes. We measure the CPU utilization of each

compute node and calculate a metric, W, to quantify the change in computation over-

head as the system scales. Abstractly, the metric W represents the amount of resources

consumed to perform a fixed unit of work. In a system that scales perfectly, this metric

would remain constant as the load increases. We compute W in this experiment as

W =
N × C

P

where N is the number of compute nodes, C ∈ [0, 1] is the average CPU utilization of the

compute nodes during the experiment, and P is the post rate (in thousands per second).

We also record the round trip time of every timeline check, which we expect to remain

relatively constant given the static deployment.

The experiment is a success: Pequod scales to handle a realistic Twitter workload. Fig-

ure 9.5 depicts the results. The top panel plots our CPU load metric, W, as a function of

114

0
0.2
0.4
0.6
0.8
1

1.2
1.4

C
PU

Lo
ad

(c
or
es
/K

po
st
s/
s)

0

10

20

30

40

50

0 2 4 6 8 10 12 14

Ti
m
el
in
e
RTT

(m
s)

Post Rate (thousands/s)

Figure 9.5:An increasing Twip workload is executed using a two-tier Pequod deployment with
18 compute nodes and 8 base nodes. Despite an order of magnitude increase in the workload,
the CPU load metric only increases by a factor of 1.43x and the RTT of timeline checks remains
relatively stable. The computation overhead of cache joins does not prohibit system scalability
for the Twip workload.

the target post rate. It indicates that the cache join computation overhead remains rela-

tively constant with respect to query rate.The application is not perfectly scalable; there is

a slight upward trend in the data (a factor of 1.43x from 1,000 to 13,000 posts per second).

Given the order ofmagnitude increase in theworkload, this additional overhead is not pro-

hibitive. The increase in W likely relates to the size of the cached timelines as the post rate

is scaled. More work is required to construct and transmit a response for each query.

The bottom panel of Figure 9.5 plots the mean and standard deviation of the RTT for

timeline checks. These results are not surprising, given that the deployment is fixed (only

18 queries can execute at any time) and the system was provisioned such that the cache

nodes are never saturated. When allocated fewer resources, we expect the RTTof timeline

checks to suffer. Indeed, when we execute this workload at a rate of 6,000 posts per second

115

using only 6 compute nodes (not shown), the mean RTT increases to 27.22ms, a factor of

1.51x longer than with 18 compute nodes.

Scaling storage

Pequod is designed to replicate data in support of cache join execution. This design al-

lows the computational capacity of the system to scale with additional cache nodes. In this

section we evaluate the effectiveness of this design, demonstrating that data replication

does not limit the scalability of the system with respect to storage capacity.

It is possible to construct an application that replicates data to every cache node. In this

case, the total storage capacity is asymptotically limited to the capacity of a single node.

Twip and Newp do not fall into this category, but they do require some thought to elimi-

nate superfluous replication. If the developer partitions the requests that trigger cache join

execution carefully, some data movement can be avoided. For example, if the requests of

a Twip user are consistently directed toward a specific cache node, that user’s subscription

list will be resident only on that node.Theposts, however, will be replicated to cache nodes

as needed. In the worst case, each of a user’s followers will be directed to a different cache

node. In practice, multiple followers will share a node, so a single copy of post data will

service many derived timelines. We expect celebrity data to propagate to all cache nodes.

We run an experiment tomeasure the extent of Twip post replication.We use theTwip-

large benchmark and a Pequod deployment with 64 compute nodes. The benchmark

produces approximately 14,000,000 new posts, which are generated according to the Twip

workload (popular users tweetmore frequently). Figure 9.6depicts the results.Thebottom

panel shows how the posts are distributed across the compute nodes. The top panel is the

CDFof the samedata. Approximately 50%of posts are replicated to 12 or fewer nodes, and

116

0

20

40

60

80

100
C
D
F
(%

)

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64

N
um

be
ro

fP
os
ts

(m
ill
io
ns
)

Replication Factor

Figure 9.6:Thedistribution of approximately 14,000,000 Twip user posts over 64 Pequod com-
pute nodes in a Twip-large benchmark execution. Approximately 50% of posts are replicated
to 12 or fewer nodes, 80% to 29 or fewer. Celebrity posts, 4% of the total, are replicated to all
nodes.

80% to 29 or fewer. Only 4% of the posts—those of celebrities—are copied to all nodes.

The results of the experiment are encouraging. Someoverhead is observed, but does not

limit scalability. Pequod scales to handle this real-world workload. The overhead is mini-

mized by carefully routing client requests; timeline checks for each user are directed to a

specific cache node. This arrangement guarantees that the sub and tline data for a user is

resident on only one compute node. If we had chosen a strategy that is less concernedwith

data placement, such as a random draw or load balancing, the overhead would grow. The

distribution of post data across the nodes mimics the follower distribution of our Twip

workload (Figure 9.1). Using domain knowledge, a developer can design data partitioning

and request routing strategies that prevent excessive replication, and provision the system

for the expected replication pattern.

117

Distribution overhead

Finally, we investigate overheads associated with increasing the number of nodes in a

Pequod deployment. A good reason for adding cache nodes is to increase the storage ca-

pacity of the system. We have demonstrated that a small number of cache nodes can be

sufficient to cover the computational needs of a Web-scale Twip deployment. However,

our experiment lasted only five minutes; the real Twitter service stores cached timelines

for weeks. The resources of many machines are required to grow the cache to this size.

Weconduct anexperiment to identifyoverheads, other than theknownreplicationover-

head, that increase with the number of nodes. For example, many Twip users co-located

on a compute node can share a single subscription to the posts of a popular user. If the

number of compute nodes is doubled, the same data are copied to twice as many nodes.

In addition to using more storage resources, the system spends more time generating and

processing subscription updates, andmore bandwidth transferring the data to subscribers.

We execute the Twip-large benchmark against deployments with 12 and 48 compute

nodes. We measure the network bandwidth used for communication between the base

and compute nodes and the memory consumed by the cache nodes that is unrelated to

storing key-value pairs. The base nodes collectively consume a factor of 1.02x more mem-

ory (approximately 7 gigabytes) in the 48 node deployment. A similarly sized overhead

is observed at the compute nodes. The increase in consumption is caused by duplicate

metadata—mostly subscription records—that arise from spreading formerly co-located

users across a larger number of nodes. Likewise, a larger fraction of the consumed network

bandwidth is dedicated to inter-node subscription maintenance, increasing from roughly

10% to 16%between 12 and 48 compute nodes.Though these overheads are potential bot-

tlenecks, they do not dominate resource consumption for our Web-scale Twip workload.

118

9.5 Eviction

Eviction is a critical function in any application-level cache. In general, a cache deploy-

ment is typically capable of storing a tiny fraction of the data held in persistent storage. For

the cache to be effective, it should hold a working set of data that are currently relevant

to the application (resulting in a high cache hit ratio). When the cache is full, data are se-

lected for eviction to make room for new entries. In §7.2 and §7.3 we discuss policies for

selecting ranges for eviction and a mechanism (tombstones) for mitigating the ill effects

of cascading eviction. In this section we evaluate several policy–tombstone combinations

to determine if these strategies are effective in practice.

In this section we run experiments to answer two questions: do type-aware eviction

policies perform better than type-agnostic policies, and are eviction tombstones an effec-

tive solution for dealing with cascades? We cannot answer these questions in general—

eviction performance is workload dependent. Rather, we demonstrate the effectiveness of

our design on a Twip workload. We begin with a benchmark based on Twip-small with

onemodification: there are only two operations, timeline checks and newposts, generated

with a ratio of 100:1. This simplified Twip workload allows us to measure the maximum

performance impact of tombstones (when cascades are deferred indefinitely).

We execute the simplified benchmark multiple times, varying the eviction policy and

toggling tombstone optimization. The policies tested are:

− No eviction. Eviction is disabled by setting a memory threshold much higher than

what is consumed during the experiment. This is used as a baseline comparison.

− LRU. All ranges (base and derived) are represented in a single list of recently used

ranges. Items are selected for eviction from the headof the list, and recently accessed

items are moved to the back.

119

Timeline RTTMean [σ] (ms)
Policy Runtime (s) Before Eviction During Eviction

No Eviction 370.17 (1.00x) 65.80 [17.19] –

LRU 496.01 (1.34x) 67.63 [16.38] 105.40 [39.98]
LRU-derived 577.95 (1.56x) 67.51 [26.04] 211.71 [188.44]
LRU-remote 493.96 (1.33x) 66.88 [17.20] 106.09 [40.35]

Tombstone LRU 388.05 (1.05x) 67.71 [16.59] 75.43 [18.81]
Tombstone LRU-derived 593.07 (1.60x) 67.09 [26.35] 222.10 [229.73]
Tombstone LRU-remote 383.34 (1.04x) 66.57 [16.92] 74.85 [18.92]

Figure9.7:Asummary of eviction policy performance on a simplifiedTwipworkload. For a two-
tier deployment, preferential eviction of remote ranges results in superior performance. Timeline
checks during the eviction period are slower by a factor of 1.58x without eviction tombstones
enabled. Enabling tombstones reduces the overhead to a factor of 1.12x.

− LRU-derived. Ranges are segregated into two types (derived and remote) and are

stored in separate LRU lists. During eviction, the derived list is exhausted before

evicting any item in the remote list.

− LRU-remote. Identical policy to LRU-derived, with the exception that the remote

ranges are evicted preferentially.

We run the benchmark against a two-tier Pequod deployment (§6.5) consisting of a sin-

gle compute node and a single base node. The nodes are deployed on separate VMs in the

Amazon EC2 cluster. The benchmark is executed as quickly as possible, and the total run-

time is recorded alongwith theRTTof every timeline check.We set amemory threshold of

22.5 gigabytes on the compute node.This threshold is selected so that eviction is triggered

during the experiment, dividing the execution into pre- and post-eviction segments.

The results of the experiment are summarized in Figure 9.7. From a high-level perspec-

tive, the system behaves as expected: with eviction enabled, the store size is limited to

120

22.5 gigabytes (without eviction it grows to26.7 gigabytes) and thebenchmark runs longer.

The overhead introduced by eviction varies with the combination of eviction parameters.

We first consider the set of experiments without eviction tombstones: LRU and LRU-

remote clearly outperform LRU-derived.This is not surprising, given the cost of full time-

line computation (§9.3). The LRU and LRU-remote policies perform similarly because

they both primarily evict remote ranges; base data ranges are not accessed (read) after

timeline construction in this workload, so they naturally migrate to the head of the LRU.

The latency overhead is significant—a factor of 1.58x on average for LRU-remote, the best

performing policy. Evicting remote ranges causes eviction cascades, which result in full

timeline computations on future checks. Given that both LRU-derived and LRU-remote

result in full timeline computations, why is the overhead somuch higher (a factor of 1.99x)

when derived data are preferentially evicted? If anything, we would expect the overhead

of LRU-remote to be higher, because base data must be re-fetched before the timeline

computation can begin.The answer lies with one of the performance optimizations, value

sharing, implemented in our prototype system (§8.2). Derived timelines have unique keys

(which consume additionalmemory), but they share thememory for their values with the

base data key-value pairs. Thus, evicting a derived range computed by the copy operator

(while the base data remain cache resident) has a limited effect on the total memory con-

sumption: more ranges need to be evicted to reach the eviction goal.The experiment with

LRU-derived evicted 5.74x more ranges (2.45x more key-value pairs) than LRU-remote,

resulting in many more timeline computations.

Weobserve from the initial results that evicting remote ranges is preferable for thiswork-

load in this deployment configuration. However, there is a significant latency added to

timeline checks when eviction is enabled. The overhead is caused by eviction cascades

121

that invalidate the derived timelines when base data are evicted. We now consider the re-

sults from the experiments in which eviction tombstones are enabled. As before, LRU and

LRU-remote perform nearly equivalently. As expected, the latency overhead is reduced

(but not eliminated) when cascades are deferred. The overhead that remains (a factor of

1.12x), is largely caused by the necessarymetadata lookup and validity checking associated

with eviction tombstones. From these results, it is clear that eviction tombstones can have

a positive effect on system performance.

Tombstones can be used to defer (but not eliminate) the ill effects of eviction cascades:

when the evicted data is next accessed, the cascade will occur. The application workload

will determine the limitations of this optimization. For example, a partial timeline compu-

tation is required when a Twip user makes a new subscription. As part of this computa-

tion, the recent posts of the subscribed-to user are scanned and merged into the existing

cached timeline. If those posts were previously evicted from the cache, the computation

would stall while the tombstone is removed (causing an eviction cascade) and the data are

reloaded. The cascade is problematic because it causes the existing cached timeline (and

the timelines of other users that subscribe to the same user) to be invalidated.

We conduct another experiment to evaluate the utility of tombstones in the presence of

operations that will trigger eviction cascades. We use the Twip-small benchmark, which

includes subscription changes, in the same two-tier deployment. We test three configura-

tions of Pequod: no eviction, LRU-remote, and LRU-remote with tombstones enabled.

Figure 9.8 depicts the experiment as a time series. We measure the store size and scan

RPC rate at the compute node, and the rates of subscribe and unsubscribe RPCs at the

base node.Note: these rates refer to the number of remote data range subscriptions that oc-

cur in the distributed system, not Twip user subscriptions. The runs are indistinguishable

122

0
5
10
15
20
25
30

St
or
e
Si
ze

(G
B)

0
20
40
60
80
100
120
140
160
180

sc
an

(t
ho

us
an
ds
/s
)

0
0.5
1

1.5
2

2.5
3

3.5
4

un
su
bs
cr

ib
e

(t
ho

us
an
ds
/s
)

0
0.5
1

1.5
2

2.5
3

0 100 200 300 400 500 600

su
bs
cr

ib
e

(t
ho

us
an
ds
/s
)

Experiment Time (s)

No eviction
LRU-remote

Tombstone LRU-remote

Figure 9.8:A timeseries of the Twip-small benchmark, executed with varying eviction param-
eters.The eviction threshold is crossed around 250 seconds. Tombstones mitigate eviction costs
(excessive subscription changes between nodes) and improve overall performance (scan rate).

prior to crossing the eviction threshold (around 250 seconds into the experiment). After

crossing, LRU-remote displays the expectedbehavior: remote ranges are evicted, subscrip-

tions are canceled, and derived timelines are invalidated.The evicted data are reloaded (as

evidenced by the number of new subscriptions made) when the invalidated timelines are

recomputed.This churn continues through the end of the experiment, resulting in a signif-

icant drop in the scan (timeline checks) rate. The experiment with tombstones exhibits

similar, albeit more subtle, behavior when eviction is triggered. Tombstones eliminate au-

123

tomatic subscription cancellations, so the large spike in unsubscribe RPCs does not oc-

cur. The small number that do occur (nearly an order of magnitude fewer) suggest that

tombstones are an effective mechanism for reducing eviction cost.

In summary, we show that range-based eviction is feasible, and that simple policies can

be applied to guide range selection.We conclude that, for the Twip workload in a two-tier

deployment, preferential eviction of remote ranges is superior to that of derived ranges and

that tombstones are effective at mitigating eviction overhead. Though these conclusions

are restricted in scope, these techniques show great potential for use in the context of other

applications.

9.6 Materialization strategy

Pequod implements cache joins using a partial, dynamic materialization strategy: quer-

ies are computed on demand, but recently-accessed ranges are eagerly and incrementally

updated. We compare this strategy with the obvious alternatives, namely no materializa-

tion (where no ranges are cached) and full materialization (where all ranges are cached

and kept up to date).

We create a Twip workload comprising only timeline check and post operations. One

million posts are distributed amongst all 1,800,000 users as described in §9.1 (proportion-

ally to the log of the follower count). We then vary p, the percentage of active users, be-

tween 1 and 100. Eachworkload performs p×1,000,000 timeline checks spread uniformly

across the 1,800,000 × p active users, resulting in a check:post ratio between 1:1 and

100:1. We use five clients and one cache node, run the workload to completion as quickly

as possible on the multiprocessor, and measure the elapsed time.

Figure 9.9 shows the results. As expected, the no-materialization strategy performs rel-

124

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e
(s
)

% Active Users, (and Check:Post Ratio)

No materialization
Full materialization

Dynamic materialization

Figure 9.9:The dynamic materialization strategy is evaluated against two alternatives (no mate-
rialization and full materialization) using a variable Twip workload of timeline checks and posts.
Smaller runtimes are better. Below 90% active users the dynamic policy is best, avoiding unnec-
essary materialization and conserving memory. Note the log scale axis.

atively well with few active users, but as timeline checks increase, materialization quickly

becomes important for performance. Because it avoids materializing data in which no one

is interested, Pequod’s dynamic materialization outperforms full materialization up to ap-

proximately 90% active users. After that, full materialization performs slightly better (a fac-

tor of 1.08x better at 100% active users). This performance difference is due to the join

computation that dynamicmaterializationmust performwhen a user first logs in. Full ma-

terialization keeps all timelines up to date at all times; though this avoids login overhead, it

inevitably uses more memory to keep fresh the timelines of inactive users. For example, at

50% active users, the full materialization strategy consumes 1.39x more memory than the

dynamic strategy in this experiment.

This experiment comparesPequod’s dynamicmaterialization strategy against the logical

extremes.While it is evident that this strategy is best amongst the tested alternatives for the

Twipworkload, it is not necessarily optimal. An application-specificmaterialization policy

125

could outperform the one-size-fits-all approach used in Pequod. For example, Silberstein

et al. [38] espouse a per-usermaterialization strategy for feed-based applications likeTwit-

ter. Even if an application-specific strategy is not implemented, thedevelopermight choose

a different metric—like access frequency—to guide dynamic materialization. Evaluating

these strategies is beyond the scope of this thesis.

9.7 Composition and tuning

Pequod leaves view selection and query planning to the application developer; this flex-

ibility, and the design flexibility offered by the key-value context, can improve application

performance. In this section we evaluate the effectiveness of interleaved cache joins (§5.7)

and eager incremental maintenance (§5.6).

Mixed joins

We begin with an evaluation of mixed cache joins: the co-location of related (but dis-

parately formatted) data into a single range.We use aNewp benchmark in this experiment.

TheNewpworkload has three types of operation: reading an article, commenting, and vot-

ing.The Pequod data store is pre-populated with 100,000 articles, 50,000 users, 1,000,000

comments, and 2,000,000 votes. We simulate 20,000,000 user sessions in which each user

1. reads a random article;

2. with a varying chance votes on the article;

3. and independently with a 1% chance comments on the article.

We execute two versions of the Newp application. The first uses separate ranges for ag-

gregate data (user karma and article vote count), requiring many RPCs in two round trips

to construct an article. The second uses an additional set of joins to integrate article data

126

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e
(s
)

Vote Rate (%)

Non-interleaved
Interleaved

Figure 9.10: A comparison of Newp cache join compositions. Smaller runtimes are better. The
version of the application that interleaves article data into a single data range outperforms the
non-interleaved version until users vote on 90% of browsed articles.

into a single range. Reading an article requires a single RPC, but more server computation

and storage overhead is incurred (upon each vote, aggregate values are copied into each

page range). The interleaved Newp joins used in this experiment are discussed in §5.7.

The experiment is run on the multiprocessor using a single cache node. We measure

the time required to execute the benchmark to completion, as quickly as possible. We ex-

pect the interleaved approach to perform well when article reads far outnumber votes and

comments.

The results, shown in Figure 9.10, indicate that interleaved cache joins are superior for

most vote rates tested. At 10% vote rate, the interleaved implementation outperforms the

non-interleaved version by a factor of 1.47x. The non-interleaved implementation issues

many gets per browsed article, each of which incurs overheads including an O(log n)

lookup. The interleaved join improves overall performance until the cost of pre-compu-

tation outweighs the cost of processing many gets (90% vote rate).

127

Interleaved Newp cache joins are appealing: the application code is reduced to a single

scan to retrieve an article and performance improves. However, there are costs associated

with interleaving.As theexperiment shows, theburdenofmaintaining thesederived ranges

can eventually outweigh the improved performance of article reads. Fortunately, writes are

infrequent in this domain [19], so this is only a problem in theory.

Split joins

We next evaluate an application of join splitting: replacing the functionality of a single

cache join with one or more joins (with differing execution or maintenance strategies).

Celebrities are a problem for Twip; their posts are disseminated to a large number of fol-

lowers’ timelines, resulting in computation and storage inefficiencies. To remedy this, the

Twip developer might split the timeline cache join so that celebrity posts are not pushed

into user timelines, but are collected with a pull join at query time and merged into the

scan results (§5.7).

We compare the performance of the split timeline join (5.11) with the original, single

join implementation (5.3). We run the Twip-small benchmark on the multiprocessor

using a single cache node. The benchmark is run to completion and the total execution

time is recorded. The version with the split timeline join is slower by a factor of 2.47x.

Though this result is negative, it does not invalidate the concept of join splitting. It only

demonstrates that splittingTwip timelines in thismanner is not effective for this workload.

The pull portion of the query adds a computational overhead to every timeline check that

includes a celebrity (a fair proportion of users).The results in §9.6 clearly indicate that this

overhead is significant. In addition, there is no improvement in memory utilization; the

split join fails to reduce the size of the store. This result is likely a side effect of the Pequod

128

prototype implementation. In theory, the pull join need not insert any key-value pairs

into the store (the results are only valid for a single request).However, our implementation

stores the keys produced by pull joins (until the next scan),making it difficult to evaluate

any potential improvements to storage utilization.

Eager incremental maintenance

Finally,we evaluate the effect of theeagerperformance annotationon theTwip timeline

cache join. The annotated cache join

tline|user|time|poster =
check eager sub|user|poster
copy post|poster|time

(9.1)

prompts Pequod to process subscription changes eagerly, triggering incremental updates

when a sub entry is added or removed.The default policy is to process such updates lazily,

deferring updates to the next timeline check. Subscription changes are 10 times more fre-

quent than new posts in our Twip workload. However, these changes affect only one user’s

timeline. By contrast, a new post will likely trigger updates to hundreds of derived ranges.

As the primary source, these updates are always handled eagerly.

In theory, the eager policy will reduce latency for a fraction of timeline checks (those

following a subscription change) by shifting the maintenance burden to the write path.

This comes at a cost: historical entries may be generated to backfill the existing timeline.

Such entries are unlikely to be viewed by the user and represent unnecessary computation

and storage overheads.

We measure the effects of the eager annotation by executing the Twip-small bench-

mark against eager and lazy versions of the timeline cache join. The experiment uses a sin-

gle cache node on the multiprocessor. The benchmark is executed as quickly as possible

129

and the total time to completion is used to compare the two policies. The results (of a sin-

gle experiment run) slightly favor eager maintenance; the eager policy outperforms the

lazy policy by a factor of 1.07x. As expected, the eager policy eliminates the 5microsecond

overhead on timeline checks after subscription changes (§9.3). However, the anticipated

memory overhead is not observed.

In this experiment we observe the positive effects of eager maintenance, but very little

of the ill effects. For the reverse side of the eager-lazy trade-off to be evident in the Twip

workload, the cost of backfilling a user’s timeline must be substantial. Unfortunately this

is not the case for the Twip-small benchmark: it is simply too small to notice this effect.

However, the trade-off remains; much larger deployments that keep weeks worth of time-

lines in the cache [25] would likely benefit from the lazy incremental maintenance policy.

9.8 Optimizations

We describe several implementation optimizations in §8.2 that were applied to the Pe-

quod prototype. In this section we assess the performance impact of each.

We conduct a factor analysis to quantify the effects of each optimization individually.

Wemeasure the time required to execute the Twip-small benchmark to completion. We

begin with an unoptimized version of Pequod and add optimizations one at a time, re-

running the benchmark for each. Five Twip clients are used to saturate a single cache node

on the multiprocessor.

The results of the experiment are depicted in Figure 9.11. Insertion hints improve the

benchmark runtimeby a factor of 1.11x over thebase implementation. Enabling value shar-

ing results in negligible speedup, but reduces memory consumption by a factor of 1.14x.

The largest improvement comes from enabling support for subtables. The Twip applica-

130

0
200
400
600
800
1000
1200
1400
1600
1800

base +hint +value sharing +subtables

R
un

tim
e
(s
)

1.00x
+1.11x +1.01x

+1.55x

Figure9.11:A factor analysis of implemented optimizations. Lower runtimes (higher speedups)
are better. Insertion hints and subtables mitigate tree-based lookup overheads and improve per-
formance by a factor of 1.11x and 1.55x, respectively. A negligible speedup is obtained from value
sharing, but this optimization reduces memory consumption by a factor of 1.14x.

tion is well suited for this optimization because each user can be segregated into a separate

subtable. Application operations are performed on a per-user basis, so all store lookups

make use of the hash index at each level. Subtables further improve the benchmark run-

time by a factor of 1.55x, but increase memory usage by a factor of 1.17x—a consequence

of additional bookkeeping.

9.9 Summary

We show that Pequod cache joins can improve the performance of Web applications

such as Twip and Newp. In-cache materialization outperforms application-managed ma-

terialization by a factor of 1.33x on our Twip workload. Further, Pequod scales to handle

real-world Twitter workloads: a Pequod cluster with 18 compute nodes and 8 base nodes

can process 13,000 new tweets and serve 1,300,000 timelines per second. The most sig-

nificant barrier to scalability is replication overhead, which can be mitigated by the devel-

oper with careful partitioning and provisioning. Eviction cascades are a significant source

131

of overhead, if left unchecked. Fortunately, a combination of type-based eviction policies

and tombstones are effective at mitigating the effects of cascades. Finally, we demonstrate

that composing and tuning cache joins can lead to performance improvements in some

applications.

132

10
Conclusion

This work studies a key component of modernWeb application architectures, the applica-

tion-level cache. We focus on the interface provided by the cache to developers. For pop-

ular caches, such as memcached and Redis, this interface is limited to application-directed

fetch and store operations, often using a simple key-value data model. We recognize that

some applicationsmake extensive use of derived data types, and that computing andmain-

taining these data using the basic interface is cumbersome and inefficient.

Pequod addresses these deficiencieswith cache joins, which introduce in-cache compu-

tation in the form of materialized views and provide a richer data model to the developer.

With cache joins, developers can transfer complexity from application code to the cache.

The only computation supported by Pequod is a natural join, which can be used to filter,

join, and aggregate cached data. We observe that this small but powerful set of operations,

especially when composed, can be used to express the core computations of some large

Web applications. We find that moving these computations into the cache improves over-

all application performance by eliminating network operations and streamlining updates.

We chose the materialized view abstraction for its familiarity and simplicity. However,

there exist fundamental differences in the data model and resource limitations between a

relational database and an application-level cache. Many of the contributions of this work

stem fromthe adaptationof thiswell-knownabstraction to the context of a key-value cache.

133

We show that a relational data model can be layered atop a simple key-value model using

relational overlays, and that these overlays can be used to define join computations.We fur-

ther show that cache joins can be efficiently computed and automatically maintained with

incremental updates. We address the issue of resource limitations in the cache by evaluat-

ing joins partially and dynamically, extending join execution across multiple servers with

data partitions and subscriptions, and evicting data in a way that preserves derived data

when possible.

Summary

Fromour perspective, Pequod is a success.Our prototype implementation outperforms

themost popular systems on application benchmarks that make substantial use of derived

data. Additionally, we find the cache join abstraction to be intuitive and freeing: a concise

join definition installed into the cache eliminates a mess of cachemaintenance code in the

application. In our opinion, Pequod cache joins improve the programmability of Web ap-

plications.Wehope that the ideas in this thesis encourage others, as they did us, to produce

more usable software systems.

134

References
[1] Parag Agrawal, Adam Silberstein, Brian F. Cooper, Utkarsh Srivastava, and Raghu

Ramakrishnan. Asynchronous viewmaintenance for VLSD databases. In Proc. SIG-
MOD’09, ACM SIGMOD Int’l Conf. on Management of Data, pages 179–192. ACM,
June 2009.

[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of
materialized views and indexes in SQL databases. In Proc. VLDB’00, 26th Int’l Conf.
on Very Large Data Bases, pages 496–505. VLDB Endowment, September 2000.

[3] Khalil Amiri, SanghyunPark, andRenuTewari. A self-managing data cache for edge-
of-network Web applications. In Proc. CIKM’02, 11th Int’l Conf. on Information and
Knowledge Management, pages 177–185. ACM, November 2002.

[4] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. DBProxy: a
dynamic data cache for Web applications. In Proc. ICDE’03, 19rd Int’l Conf. on Data
Engineering, pages 821–831. IEEE Computer Society, March 2003.

[5] Chris Aniszczyk. Caching with Twemcache. Blog post. https://blog.twitter.
com/2012/caching-with-twemcache, July 2012.

[6] Beevolve, Inc. An exhaustive study of Twitter users across the world. http://www.
beevolve.com/twitter-statistics/#b2, October 2012.

[7] Jose A. Blakeley, Per-Åke Larson, and FrankWmTompa. Efficiently updating mate-
rialized views. In Proc. SIGMOD’86, 1986 ACMSIGMOD Int’l Conf. onManagement
of Data, pages 61–71. ACM, May 1986.

[8] BurtonH. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, July 1970.

[9] Boost Intrusive Data Structures. http://www.boost.org/doc/libs/1_56_0/doc/
html/intrusive.html.

[10] R. F. Boyce, D. D. Chamberlin, M. M. Hammer, and W. F. King. Specifying queries
as relational expressions. In Proc. SIGPLAN’73, 1973 Meeting on Programming Lan-
guages and Information Retrieval, pages 31–47. ACM, November 1973.

135

https://blog.twitter.com/2012/caching-with-twemcache
https://blog.twitter.com/2012/caching-with-twemcache
http://www.beevolve.com/twitter-statistics/#b2
http://www.beevolve.com/twitter-statistics/#b2
http://www.boost.org/doc/libs/1_56_0/doc/html/intrusive.html
http://www.boost.org/doc/libs/1_56_0/doc/html/intrusive.html

[11] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently caching
dynamic web data. In Proc. INFOCOM’99, 18th Joint Conf. of the IEEEComputer and
Communications Societies, volume 1, pages 294–303. IEEEComputer Society,March
1999.

[12] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi-
jayshankar Raman, Frederick Reiss, and Mehul A. Shah. Telegraphcq: Continuous
dataflow processing for an uncertain world. In Proc. CIDR’03, 1st Biennial Conf. on
Innovative Data Systems Research. VLDB Foundation, January 2003.

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In Proc. OSDI’06, 7th USENIX Conf.
on Operating Systems Design and Implementation, pages 205–218. USENIX Associa-
tion, November 2006.

[14] Rada Chirkova and Jun Yang. Materialized views. Foundations and Trends in
Databases, 4(4):295–405, 2012.

[15] E. F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377–387, June 1970.

[16] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endowment,
1(2):1277–1288, August 2008.

[17] Douglas Crockford. The application/json Media Type for JavaScript Object Nota-
tion (JSON). RFC 4627, The Internet Engineering Task Force, July 2006. http:
//tools.ietf.org/html/rfc4627.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proc.
SOSP’07, 21st ACM SIGOPS Symposium on Operating Systems Principles, pages 205–
220. ACM, October 2007.

[19] JeremyEdberg. ScalingReddit from1million to 1 billion -– pitfalls and lessons. Talk
atRAMPConf. http://www.infoq.com/presentations/scaling-reddit, August
2013.

[20] Facebook. http://facebook.com.

136

http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.infoq.com/presentations/scaling-reddit
http://facebook.com

[21] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views:
Problems, techniques, and applications. InAshishGupta and Iderpal SinghMumick,
editors,Materialized Views, pages 145–157.MITPress, Cambridge,MA,USA, 1999.

[22] Ashish Gupta, Inderpal SinghMumick, and V. S. Subrahmanian. Maintaining views
incrementally. In Proc. SIGMOD’93, 1993 ACMSIGMOD Int’l Conf. onManagement
of Data, pages 157–166. ACM, May 1993.

[23] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
OLTP through the looking glass, and what we found there. In Proc. SIGMOD’08,
ACMSIGMOD Int’l Conf. onManagement of Data, pages 981–992. ACM, June 2008.

[24] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In Proc. Eu-
rosys’07, 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems, pages 59–
72. ACM, March 2007.

[25] Raffi Krikorian. Real-time delivery architecture at Twitter. Talk at QCon New
York. http://www.infoq.com/presentations/Real-Time-Delivery-Twitter,
October 2012.

[26] RaffiKrikorian. New tweets per second record, and how! Blog post. https://blog.
twitter.com/2013/new-tweets-per-second-record-and-how, August 2013.

[27] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a
social network or a newsmedia? In Proc.WWW’10, 19th Int’l WorldWideWeb Conf.,
pages 591–600. ACM, April 2010.

[28] P.-Å. Larson and H.Z. Yang. Computing queries from derived relations. In Proc.
VLDB’85, 11th Int’l Conf. on Very Large Data Bases, pages 259–269. VLDB Endow-
ment, August 1985.

[29] Gang Luo. Partial materialized views. In Proc. ICDE’07, 23rd Int’l Conf. on Data
Engineering, pages 756–765. IEEE Computer Society, April 2007.

[30] memcached. http://memcached.org.

[31] Memtier Benchmark. https://github.com/RedisLabs/memtier_benchmark.

[32] MessagePack. http://msgpack.org.

[33] DomasMituzas andMark Konetchy. Facebook Tech Talk:MySQL&Hbase. http:
//livestre.am/1aeeW, December 2011.

137

http://www.infoq.com/presentations/Real-Time-Delivery-Twitter
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
http://memcached.org
https://github.com/RedisLabs/memtier_benchmark
http://msgpack.org
http://livestre.am/1aeeW
http://livestre.am/1aeeW

[34] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
TonyTung, andVenkateshwaranVenkataramani. ScalingMemcache at Facebook. In
Proc. NSDI’13, 10thUSENIXConf. onNetworked SystemsDesign and Implementation,
pages 385–398. USENIX Association, April 2013.

[35] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and Barbara
Liskov. Transactional consistency and automaticmanagement in an application data
cache. In Proc. OSDI’10, 9th USENIX Conf. on Operating Systems Design and Imple-
mentation, pages 1–15. USENIX Association, October 2010.

[36] Reddit. http://reddit.com.

[37] Redis. http://redis.io.

[38] Adam Silberstein, Jeff Terrace, Brian F. Cooper, and Raghu Ramakrishnan. Feed-
ing frenzy: selectively materializing users’ event feeds. In Proc. SIGMOD’10, ACM
SIGMOD Int’l Conf. on Management of Data, pages 831–842. ACM, June 2010.

[39] Tamer. https://github.com/kohler/tamer.

[40] Twitter. http://twitter.com.

[41] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-
era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,
Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri Petrov,
andLovroPuzar. TAO:HowFacebook serves the social graph. InProc. SIGMOD’12,
ACMSIGMOD Int’l Conf. onManagement of Data, pages 791–792. ACM,May 2012.

[42] Jingren Zhou, Per-Åke Larson, andHicham G. Elmongui. Lazy maintenance of ma-
terialized views. In Proc. VLDB’07, 33rd Int’l Conf. on Very Large Data Bases, pages
231–242. VLDB Endowment, September 2007.

[43] JingrenZhou, Per-Åke Larson, and JonathanGoldstein. Partiallymaterialized views.
Technical Report MSR-TR-2005-77, Microsoft Research, 2005.

[44] Jingren Zhou, Per-Åke Larson, JonathanGoldstein, and LupingDing. Dynamicma-
terialized views. In Proc. ICDE’07, 23rd Int’l Conf. on Data Engineering, pages 526–
535. IEEE Computer Society, April 2007.

138

http://reddit.com
http://redis.io
https://github.com/kohler/tamer
http://twitter.com

	Introduction
	Background
	Existing key-value application-level caches
	Automatic cache maintenance
	Materialized views
	View maintenance
	View selection
	Distributed materialized views
	Summary

	Motivation
	Caching Twip
	Caching Newp

	Usage
	Data ranges
	Relational overlays
	Deployment

	Cache joins
	Specification
	Twip and Newp revisited
	Forward execution
	Partial, dynamic materialization
	Incremental maintenance
	Tuning
	Composition
	Discussion and limitations

	Distribution
	Partitioning
	Subscriptions
	Cache join execution
	Scaling
	Deployment
	Consistency
	Discussion and limitations

	Eviction
	Range-based eviction
	Policies
	Tombstones
	Discussion and limitations

	Implementation
	Ordered data storage
	Optimizations

	Evaluation
	Experiment setup
	System comparison
	Computational variability
	Scalability
	Eviction
	Materialization strategy
	Composition and tuning
	Optimizations
	Summary

	Conclusion

