FHasy Freshness with Pequod
Cache Joins

Bryan Kate, Eddie Kohler, Mike Kester

Harvard University

Yandong Mao, Neha Narula, Robert Morris
MIT

tl:dr

Web application caches should support

materialized views natively.

In-cache materialized views are easy to use and
have good pertormance.

application cache

* fast key-value cache

— examples: memcached, Redis
* offloads reads from database

* managed by application developer

— assume burden of maintenance

p—
MEDO T \

S

il

- —

covle
Yo 1 MESS V\Q.’

BIK
@ ‘(Ab\i\("é AT #4NSD(AY

T oony. HPERYOD

@ MmiKe
Pp\‘é TABLES RV

N

e

@ £€7Dl€
cHECIED \N pet
O £ NsSd (14

—

@ cooie
LonT MeESS we!

\

Tooay - H PLRVOD

;5,:,\4\(«4, AT FNCDIAM

SN—

@ MIKE l
onb€ TABLES RULL!

€nbie
CHECKeD 1N oot

4 nsorit

/j SPamBeT
Q@ BLad BLpd

D

]

SoRT

\

_/

> (ke |
— f BléﬁéR&

wont Mess we! \ -@
@ E:.T,\L\Nb AT FNSDIAM \ \ K

100 timeline checks for every new post!

(€ A% G
+ NSD«H

SPamieT
BLaH BLAY

i

SO'KT

\

DAXTA CENTER

APP)
CACHE

-
TWER |

DB
S

_ _

DAXTA CENTER

e ARY
t% ~~’\ U\CH\)

-
TWER %‘
N D
ER €R§J

__—

DAXTA CENTER

i — APY
/ \% ~~f\ U\CH\)

//:;g:;; — j
W E 18
EE RNERS DB
—
_

__—

DATA CENTER

P APY
tg ::\ CA CH\)

=
>

/IQ\JEB . NEw PosT _
NET AWV,
EER E?;
_

__—

DAXTA CENTER

o——

(

—

&)

B

t@

UYDATE
CACHED

T WER
EEK\/E?S

_

meuwes/////%/‘/

NEW o ST

DAXTA CENTER

o——

(

—

&)

B

t@

UYDATE
CACHED

T WER
EE?\/E?S

_

meuwes/////%/‘/

NEW o ST

timeline database query

SELECT post.time, post.poster, post.content
FROM post JOIN sub
WHERE sub.follows = post.poster
AND sub.user = 'bk’
AND post.time >= 100
ORDER BY post.time;

timeline materialized view

CREATE MATERIALIZED VIEW tline AS
SELECT sub.user, post.time, post.poster, post.content
FROM post JOIN sub
WHERE sub.follows = post.poster;

SELECT * FROM tline
WHERE tline.user = ‘bk’ AND tline.time >= 100
ORDER BY tline.time;

* arrange data for quick reading
— computation happens in advance—good!

— simple query on materialized data—good!

easy, but slow

* the database becomes a bottleneck
— most important job: durable storage
— handling reads + writes may be too much
— better to offload reads

— implementation issues (locks, transactions, ...)

DAXTA CENTER

APP)

\ C ACRE

N
ACKER
TY; j

\WN £ 18 NEw PosT _
EER\/@& s

Pequod

* a distributed application cache

* materialized views 1n a key-value cache

— operations: get, put, scan, plus join

* good performance and programmability

advanced materialized views

simple materialized views are a bad fit for caches

— need advanced features from recent research

partial: only portions are materialized as needed
dynamic: portions are selected based on requests
incremental updates: track dependencies between data
eager updates

lazy updates

distributed

in an ordered key-value cache!

KV materialized views?

CREATE MATERIALIZED VIEW tline AS
SELECT sub.user. post.time, post.poster, post.content
FROM post JOIN sub
WHERE sub.follows = post.poster;

* but Pequod only understands get, put, scan!
— want key-value for performance

— how to represent the relations needed for views?

21

Pequod cache joins

CREATE MATERIALIZED VIEW tline AS
SELECT sub.user. post.time, post.poster, post.content
FROM post JOIN sub
WHERE sub.follows = post.poster;

tline|<user>|<time>|<poster> =
check sub|<user>|<poster>
copy post|<poster>|<time>;

Pequod cache joins

CREATE MATERIALIZED VIEW tline AS
SELECT sub.user. post.time, post.poster, post.content

FROM post JOIN sub
WHERE sub.follows = post.poster;
OuUTPULUT
tline|<user>|<time>|<poster> =
check sub|<user>|<poster>
post|<poster>|<time>; ; ’

N
OPERATOR ({:%;\rT'S;

23

Pequod cache joins

CREATE MATERIALIZED VIEW tline AS

SELECT sub.user. post.time, post.poster, post.content
FROM post JOIN sub
WHERE sub.follows = post.poster;

tline|<user>|<time>|<poster> =
check sub|<user>|<poster>
copy post|<poster>|<time>;

scan(tline|bk|100, tline|bk>)

24

SU®R TLINE

|
B e

M IKE

@ DKFl @ Eodig @ Milke

XOST

SUB TL\NE
o —— *

B | scan(tline|bk|100, tline|bk~)
B ~aoe

M IKE

@ D\<Fl @ Eodig @ Mike

FOST >

SUB TLINE
o —— *
| scan(tline|bk|100, tline|bk>)

e

G tline|<user>|<time>|<posters> =
check sub|<users|<poster>
copy post|<poster>|<time>;

C§>DK C>>aww Tf> Milke

XOST

SVUG TULINE
ey ?
@ B(\; :_A
e t?; ——
N | — ET—=

XOST

XOST

XOST

30

scale

* distributed Pequod scales to large data sets

— key design choice: computation is local

* base data is partitioned

— example: sub, post “tables”

* cache joins can be computed anywhere

— base data transparently replicated as necessary

-

APP)

CoDE

distributed deployment

distributed deployment (read)

o
W ek LE | (K
APP
CoE -

distributed deployment (read)

SUBSCRIBE

CPo?Sﬂ Nl| Ke | lo;, D
osT| nicet
DB

distributed deployment (read)

distributed deployment (write)

|
°

(A)(/>)
EDDIE MIK
APP

Cobe ~— D
N

distributed deployment (write)

|
°

APP
CoDE

other features

* advanced cache joins
— interleaved: collocate different kinds of data
— stacked
— materialized, non-materialized, or snapshot

— aggregates

* eviction

* consistency

evaluation

e Twitter-like benchmark

— based on 2009 Twitter social graph
— check, subscribe, post (100:10:1)

* evaluate potential bottlenecks in Pequod

— database omitted in experiments

— clients write data directly to Pequod

system comparison

Do cache joins have key-value cache performance?

* goal: perform no worse than existing caches

* compare with:
— fast KV caches: Redis, memcached

— DB-as-cache: Postgres (in-memory, tuned)

* Postgres uses “materialized views” (triggers)

350

300

250

200

QPS (thousands / s)
S o
o o

o)
o

()

system comparison

Pequod

Redis memcached Postgres

41

scaling Pequod

Will adding servers improve performance?
What is the overhead of data movement?

e cluster on Amazon EC2

* two-tier deployment
— subscriptions, posts on “base’ servers
— timelines executed on “compute” servers

— replication 1s required

QPS (millions / s)

NN W A~ O

scaling Pequod

12

24 36
Compute servers

48

scaling Pequod (overhead)

* steady-state bandwidth for data movement
— 10 & 16% (larger fanout)

* total memory consumption
— 290 & 297GB at base (subscription metadata)
— 1.2 2 1.5TB at compute (duplicate data)

* overhead is noticeable but not crippling

selected related work

* DMV [Zhou et al, 2007]

— partial, dynamic database materialized views

* DBProxy [Amiri et al, 2002-3]

— distributed cache built from databases

— incremental updates to cached results

* MV in PNUTS [Agrawal et al, 2009]

— materialized views in a key-value store

— incremental updates, not partial

conclusion

* Pequod cache joins
— programmability of materialized views

— performance of a key-value cache

— code release soon! github.com/bryankate

